Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system

被引:12
|
作者
Li, Bo [1 ]
Wang, Fangfang [1 ]
Zhang, Xiaoyan [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
关键词
Sel'kov-Schnakenberg reaction-diffusion system; Turing pattern; Nonconstant steady state a priori estimates; Existence; Nonexistence; STEADY-STATE SOLUTIONS; LENGYEL-EPSTEIN SYSTEM; HARRISON REACTION SCHEME; PATTERN-FORMATION; TURING PATTERNS; CHEMICAL OSCILLATIONS; QUALITATIVE-ANALYSIS; BIFURCATION ANALYSIS; MODEL; GLYCOLYSIS;
D O I
10.1016/j.nonrwa.2018.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns a generalized Sel'kov-Schnakenberg reaction-diffusion system. Criteria for the stability and instability of the unique constant steady state solution are given. Various conditions on the existence and nonexistence of nonconstant steady state solutions are established. In particular, it is proved that the system admits no nonconstant steady state solution provided that d(2) is large enough and 0 < p <= 1, while it has nonconstant steady state solution if d(2) is large enough and p > 1. This implies, when d(2) is large enough, the index p = 1 is the critical value of generating spatial pattern (especially, Turing pattern). Our main results essentially improve those in previous works. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:537 / 558
页数:22
相关论文
共 50 条
  • [1] STEADY STATES OF A SEL'KOV-SCHNAKENBERG REACTION-DIFFUSION SYSTEM
    Li, Bo
    Zhang, Xiaoyan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1009 - 1023
  • [2] Bifurcations in a General Delay Sel'kov-Schnakenberg Reaction-Diffusion System
    Li, Yanqiu
    Zhang, Lei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (16):
  • [3] Turing-Hopf Bifurcation Analysis of the Sel'kov-Schnakenberg System
    Liu, Yuying
    Wei, Xin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (01):
  • [4] Turing instability and pattern formation in a diffusive Sel'kov-Schnakenberg system
    Wang, Yong
    Zhou, Xu
    Jiang, Weihua
    Qi, Liangping
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (05) : 1036 - 1062
  • [5] An Efficient Linearized Difference Algorithm for a Diffusive Sel′kov-Schnakenberg System
    Wang, Yange
    Bai, Xixian
    MATHEMATICS, 2024, 12 (06)
  • [6] Hopf bifurcation analysis of a reaction-diffusion Sel'kov system
    Han, Wei
    Bao, Zhenhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 633 - 641
  • [7] Finite-time control of the discrete Sel'kov-Schnakenberg model: Synchronization and simulations
    Al-Taani, Hussein
    Hammad, Ma'mon Abu
    Alomari, Omar
    Bendib, Issam
    Ouannas, Adel
    AIP ADVANCES, 2025, 15 (02)
  • [8] Stability analysis for Selkov-Schnakenberg reaction-diffusion system
    Al Noufaey, K. S.
    OPEN MATHEMATICS, 2021, 19 (01): : 46 - 62
  • [9] Bifurcation analysis of reaction-diffusion Schnakenberg model
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    Feng, Xiuhong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 2001 - 2019
  • [10] Turing instability and pattern formation in a diffusive Sel’kov–Schnakenberg system
    Yong Wang
    Xu Zhou
    Weihua Jiang
    Liangping Qi
    Journal of Mathematical Chemistry, 2023, 61 : 1036 - 1062