Bifurcation analysis of reaction-diffusion Schnakenberg model

被引:60
|
作者
Liu, Ping [1 ,2 ]
Shi, Junping [3 ]
Wang, Yuwen [1 ,2 ]
Feng, Xiuhong [1 ,2 ]
机构
[1] Harbin Normal Univ, YY Tseng Funct Anal Res Ctr, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
黑龙江省自然科学基金; 美国国家科学基金会;
关键词
Schnakenberg model; Steady state solution; Hopf bifurcation; Steady state bifurcation; Pattern formation; SPATIOTEMPORAL PATTERNS; STABILITY; DYNAMICS; SYSTEMS;
D O I
10.1007/s10910-013-0196-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction-diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.
引用
收藏
页码:2001 / 2019
页数:19
相关论文
共 50 条
  • [1] Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model
    Yang, Rui
    [J]. APPLICABLE ANALYSIS, 2023, 102 (02) : 672 - 693
  • [2] Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model
    Xu, Chuang
    Wei, Junjie
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1961 - 1977
  • [3] Bifurcation analysis of reaction–diffusion Schnakenberg model
    Ping Liu
    Junping Shi
    Yuwen Wang
    Xiuhong Feng
    [J]. Journal of Mathematical Chemistry, 2013, 51 : 2001 - 2019
  • [4] Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay
    Alfifi, H. Y.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 155
  • [5] Bifurcation Analysis of a Generic Reaction-Diffusion Turing Model
    Liu, Ping
    Shi, Junping
    Wang, Rui
    Wang, Yuwen
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (04):
  • [6] Stability analysis for Selkov-Schnakenberg reaction-diffusion system
    Al Noufaey, K. S.
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 46 - 62
  • [7] Turing-Hopf bifurcation in a general Selkov-Schnakenberg reaction-diffusion system
    Li, Yanqiu
    Zhou, Yibo
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 171
  • [8] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction-diffusion model
    Yang, Rui
    [J]. NONLINEAR DYNAMICS, 2022, 110 (02) : 1753 - 1766
  • [9] An algorithm for Hopf bifurcation analysis of a delayed reaction-diffusion model
    Kayan, S.
    Merdan, H.
    [J]. NONLINEAR DYNAMICS, 2017, 89 (01) : 345 - 366
  • [10] Analysis on a generalized Sel'kov-Schnakenberg reaction-diffusion system
    Li, Bo
    Wang, Fangfang
    Zhang, Xiaoyan
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 44 : 537 - 558