Bifurcation analysis of reaction–diffusion Schnakenberg model

被引:3
|
作者
Ping Liu
Junping Shi
Yuwen Wang
Xiuhong Feng
机构
[1] Harbin Normal University,Y.Y. Tseng Functional Analysis Research Center and School of Mathematical Sciences
[2] College of William and Mary,Department of Mathematics
来源
关键词
Schnakenberg model; Steady state solution; Hopf bifurcation; Steady state bifurcation; Pattern formation; 58F07; 58C28; 58C15; 34C23; 35B20; 35B32;
D O I
暂无
中图分类号
学科分类号
摘要
Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction–diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.
引用
收藏
页码:2001 / 2019
页数:18
相关论文
共 50 条
  • [1] Bifurcation analysis of reaction-diffusion Schnakenberg model
    Liu, Ping
    Shi, Junping
    Wang, Yuwen
    Feng, Xiuhong
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (08) : 2001 - 2019
  • [2] Bifurcation analysis and spatiotemporal patterns in delayed Schnakenberg reaction-diffusion model
    Yang, Rui
    APPLICABLE ANALYSIS, 2023, 102 (02) : 672 - 693
  • [3] Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model
    Xu, Chuang
    Wei, Junjie
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (04) : 1961 - 1977
  • [4] Discretization, bifurcation analysis and chaos control for Schnakenberg model
    Din, Qamar
    Haider, Kamran
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (08) : 1615 - 1649
  • [5] Discretization, bifurcation analysis and chaos control for Schnakenberg model
    Qamar Din
    Kamran Haider
    Journal of Mathematical Chemistry, 2020, 58 : 1615 - 1649
  • [6] Stability analysis for Schnakenberg reaction-diffusion model with gene expression time delay
    Alfifi, H. Y.
    CHAOS SOLITONS & FRACTALS, 2022, 155
  • [7] Cross-diffusion induced spatiotemporal patterns in Schnakenberg reaction–diffusion model
    Rui Yang
    Nonlinear Dynamics, 2022, 110 : 1753 - 1766
  • [8] THE BIFURCATION ANALYSIS OF TURING PATTERN FORMATION INDUCED BY DELAY AND DIFFUSION IN THE SCHNAKENBERG SYSTEM
    Yi, Fengqi
    Gaffney, Eamonn A.
    Seirin-Lee, Sungrim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (02): : 647 - 668
  • [9] Turing-Hopf bifurcation in a general Selkov-Schnakenberg reaction-diffusion system
    Li, Yanqiu
    Zhou, Yibo
    CHAOS SOLITONS & FRACTALS, 2023, 171
  • [10] An algorithm for Hopf bifurcation analysis of a delayed reaction–diffusion model
    Ş. Kayan
    H. Merdan
    Nonlinear Dynamics, 2017, 89 : 345 - 366