Bifurcation analysis of reaction–diffusion Schnakenberg model

被引:3
|
作者
Ping Liu
Junping Shi
Yuwen Wang
Xiuhong Feng
机构
[1] Harbin Normal University,Y.Y. Tseng Functional Analysis Research Center and School of Mathematical Sciences
[2] College of William and Mary,Department of Mathematics
来源
关键词
Schnakenberg model; Steady state solution; Hopf bifurcation; Steady state bifurcation; Pattern formation; 58F07; 58C28; 58C15; 34C23; 35B20; 35B32;
D O I
暂无
中图分类号
学科分类号
摘要
Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction–diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.
引用
收藏
页码:2001 / 2019
页数:18
相关论文
共 50 条
  • [21] BIFURCATION ANALYSIS OF A SINGLE SPECIES REACTION-DIFFUSION MODEL WITH NONLOCAL DELAY
    Zhou, Jun
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 249 - 281
  • [22] Bifurcation Analysis of an Advertising Diffusion Model
    Wang, Yong
    Wang, Yao
    Qi, Liangping
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [23] STABILITY OF THE PERIODIC SOLUTIONS OF THE SCHNAKENBERG MODEL UNDER DIFFUSION
    Ricard, Mariano R.
    Solano, Yadira H.
    BIOMAT 2006, 2007, : 53 - +
  • [24] Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control
    Zhu, Linhe
    Zhao, Hongyong
    Wang, Xiaoming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) : 747 - 768
  • [25] Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation
    Kabir, M. Humayun
    Gani, M. Osman
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [26] Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces
    Daljit Singh J. Dhillon
    Michel C. Milinkovitch
    Matthias Zwicker
    Bulletin of Mathematical Biology, 2017, 79 : 788 - 827
  • [27] Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces
    Dhillon, Daljit Singh J.
    Milinkovitch, Michel C.
    Zwicker, Matthias
    BULLETIN OF MATHEMATICAL BIOLOGY, 2017, 79 (04) : 788 - 827
  • [28] BIFURCATION ANALYSIS OF A DELAYED EPIDEMIC MODEL WITH DIFFUSION
    Xu, Changjin
    Liao, Maoxin
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 26 (02): : 321 - 338
  • [29] Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model
    Guo, Gaihui
    Li, Bingfang
    Wei, Meihua
    Wu, Jianhua
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) : 265 - 277
  • [30] Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay
    Omrana, A. K.
    Zaky, M. A.
    Hendy, A. S.
    Pimenova, V. G.
    APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 295 - 310