Bifurcation analysis of reaction-diffusion Schnakenberg model

被引:60
|
作者
Liu, Ping [1 ,2 ]
Shi, Junping [3 ]
Wang, Yuwen [1 ,2 ]
Feng, Xiuhong [1 ,2 ]
机构
[1] Harbin Normal Univ, YY Tseng Funct Anal Res Ctr, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
[3] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
基金
黑龙江省自然科学基金; 美国国家科学基金会;
关键词
Schnakenberg model; Steady state solution; Hopf bifurcation; Steady state bifurcation; Pattern formation; SPATIOTEMPORAL PATTERNS; STABILITY; DYNAMICS; SYSTEMS;
D O I
10.1007/s10910-013-0196-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction-diffusion system modeling Schnakenberg chemical reaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.
引用
收藏
页码:2001 / 2019
页数:19
相关论文
共 50 条
  • [21] Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation
    Kabir, M. Humayun
    Gani, M. Osman
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
  • [22] Hopf bifurcation and steady-state bifurcation for an autocatalysis reaction-diffusion model
    Guo, Gaihui
    Li, Bingfang
    Wei, Meihua
    Wu, Jianhua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) : 265 - 277
  • [23] Stability and bifurcation in a reaction-diffusion model with nonlinear boundary conditions
    Li, Shangzhi
    Guo, Shangjiang
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 145
  • [24] Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect
    Guo, Shangjiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (04) : 1409 - 1448
  • [25] Hopf bifurcation of a delayed reaction-diffusion model with advection term
    Ma, Li
    Wei, Dan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212 (212)
  • [26] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    [J]. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [27] Numerical algorithm for a generalized form of Schnakenberg reaction-diffusion model with gene expression time delay
    Omrana, A. K.
    Zaky, M. A.
    Hendy, A. S.
    Pimenova, V. G.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 185 : 295 - 310
  • [28] STEADY STATES OF A SEL'KOV-SCHNAKENBERG REACTION-DIFFUSION SYSTEM
    Li, Bo
    Zhang, Xiaoyan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1009 - 1023
  • [29] Analysis of bifurcation patterns in reaction-diffusion systems: Effect of external noise on the Brusselator model
    Yerrapragada, SS
    Bandyopadhyay, JK
    Jayaraman, VK
    Kulkarni, BD
    [J]. PHYSICAL REVIEW E, 1997, 55 (05): : 5248 - 5260
  • [30] ASYMPTOTIC AND BIFURCATION ANALYSIS OF WAVE-PINNING IN A REACTION-DIFFUSION MODEL FOR CELL POLARIZATION
    Mori, Yoichiro
    Jilkine, Alexandra
    Edelstein-Keshet, Leah
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 1401 - 1427