STEADY STATES OF A SEL'KOV-SCHNAKENBERG REACTION-DIFFUSION SYSTEM

被引:10
|
作者
Li, Bo [1 ]
Zhang, Xiaoyan [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
关键词
PREDATOR-PREY SYSTEM; NONMONOTONIC FUNCTIONAL-RESPONSE; HOPF-BIFURCATION ANALYSIS; QUALITATIVE-ANALYSIS; CROSS-DIFFUSION; STATIONARY PATTERNS; TURING PATTERNS; MODEL; GLYCOLYSIS; STABILITY;
D O I
10.3934/dcdss.2017053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with a reaction-diffusion model, known as the Sel'kov-Schnakenberg system, and study the associated steady state problem. We obtain existence and nonexistence results of nonconstant steady states, which in turn imply the criteria for the formation of spatial pattern (especially, Turing pattern). Our results reveal the different roles of the diffusion rates of the two reactants in generating spatial pattern.
引用
收藏
页码:1009 / 1023
页数:15
相关论文
共 50 条