STEADY STATES OF A SEL'KOV-SCHNAKENBERG REACTION-DIFFUSION SYSTEM
被引:10
|
作者:
Li, Bo
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
Li, Bo
[1
]
Zhang, Xiaoyan
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
Zhang, Xiaoyan
[2
]
机构:
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
In this paper, we are concerned with a reaction-diffusion model, known as the Sel'kov-Schnakenberg system, and study the associated steady state problem. We obtain existence and nonexistence results of nonconstant steady states, which in turn imply the criteria for the formation of spatial pattern (especially, Turing pattern). Our results reveal the different roles of the diffusion rates of the two reactants in generating spatial pattern.
机构:
Univ Tokyo, Sch Arts & Sci, Dept Basic Sci, Meguro Ku, Tokyo 1538902, JapanUniv Tokyo, Sch Arts & Sci, Dept Basic Sci, Meguro Ku, Tokyo 1538902, Japan
Togashi, Y
Kaneko, K
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Sch Arts & Sci, Dept Basic Sci, Meguro Ku, Tokyo 1538902, JapanUniv Tokyo, Sch Arts & Sci, Dept Basic Sci, Meguro Ku, Tokyo 1538902, Japan
机构:
Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R ChinaHarbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
Qu, Anqi
Wang, Jinfeng
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R ChinaHarbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China