Real-time thinning algorithms for 2D and 3D images using GPU processors

被引:0
|
作者
Martin G. Wagner
机构
[1] University of Wisconsin,Department of Medical Physics
来源
关键词
Centerline; GPU Programming; Medial axis; Skeletonization; Thinning;
D O I
暂无
中图分类号
学科分类号
摘要
The skeletonization of binary images is a common task in many image processing and machine learning applications. Some of these applications require very fast image processing. We propose novel techniques for efficient 2D and 3D thinning of binary images using GPU processors. The algorithms use bit-encoded binary images to process multiple points simultaneously in each thread. The simpleness of a point is determined based on Boolean algebra using only bitwise logical operators. This avoids computationally expensive decoding and encoding steps and allows for additional parallelization. The 2D algorithm is evaluated using a data set of handwritten characters images. It required an average computation time of 3.53 ns for 32 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 32 pixels and 0.25 ms for 1024 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1024 pixels. This is 52–18,380 times faster than a multi-threaded border-parallel algorithm. The 3D algorithm was evaluated based on clinical images of the human vasculature and required computation times of 0.27 ms for 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 voxels and 20.32 ms for 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 voxels, which is 32–46 times faster than the compared border-sequential algorithm using the same GPU processor. The proposed techniques enable efficient real-time 2D and 3D skeletonization of binary images, which could improve the performance of many existing machine learning applications.
引用
下载
收藏
页码:1255 / 1266
页数:11
相关论文
共 50 条
  • [1] Real-time thinning algorithms for 2D and 3D images using GPU processors
    Wagner, Martin G.
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (05) : 1255 - 1266
  • [2] Real-time 2D–3D filtering using order statistics based algorithms
    Volodymyr I. Ponomaryov
    Journal of Real-Time Image Processing, 2007, 1 : 173 - 194
  • [3] Real-time 3D registration using GPU
    Park, Soon-Yong
    Choi, Sung-In
    Kim, Jun
    Chae, Jeong Sook
    MACHINE VISION AND APPLICATIONS, 2011, 22 (05) : 837 - 850
  • [4] Real-time 3D registration using GPU
    Soon-Yong Park
    Sung-In Choi
    Jun Kim
    Jeong Sook Chae
    Machine Vision and Applications, 2011, 22 : 837 - 850
  • [5] Animating 3D Vegetation in Real-time Using a 2D Approach
    Chen, Kan
    Johan, Henry
    PROCEEDINGS - I3D 2015, 2015, : 69 - 76
  • [6] Real-time 2D to 3D video conversion
    Ianir Ideses
    Leonid P. Yaroslavsky
    Barak Fishbain
    Journal of Real-Time Image Processing, 2007, 2 : 3 - 9
  • [7] Real-time 2D to 3D video conversion
    Ideses, Ianir
    Yaroslavsky, Leonid P.
    Fishbain, Barak
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2007, 2 (01) : 3 - 9
  • [8] Registration of 2D cardiac images to real-time 3D ultrasound volumes for 3D stress echocardiography
    Leung, K. Y. Esther
    Van Stralen, Marijn
    Voormolen, Marco M.
    Van Burken, Gerard
    Nemes, Attila
    Ten Cate, Folkert J.
    Geleijnse, Marcel L.
    De Jong, Nico
    Van der Steen, Antonius F. W.
    Reiber, Johan H. C.
    Bosch, Johan G.
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [9] Real-time 3D body pose tracking from multiple 2D images
    Chu, Chi-Wei
    Nevatia, Rarnakant
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS, 2008, 5098 : 42 - +
  • [10] Real-time virtual laboratory design for coherent optoelectronical processors for 2D, 3D objects' recognition
    Lemieszewski, Lukasz
    Ochin, Evgeny
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2006, PTS 1 AND 2, 2006, 6347