On conformal capacity and Teichmüller’s modulus problem in space

被引:0
|
作者
Dimitrios Betsakos
机构
[1] University of Helsinki,Department of Mathematics
来源
关键词
Dimensional Plane; Quasiregular Mapping; Extremal Length; Modulus Problem; Rectilinear Segment;
D O I
暂无
中图分类号
学科分类号
摘要
We solve an extremal problem for the conformal capacity of certain space condensers. The extremal condenser is conformally equivalent to Teichmüller’s ring. As an application, we give a dimension-free estimate for the minimal conformal capacity of the condensers with platesE, F such thata, b ∈ E,c, d ∈ F, wherea, b, c, d are given points in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline R ^n $$ \end{document}.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条
  • [1] On conformal capacity and Teichmuller's modulus problem in space
    Betsakos, D
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1): : 201 - 214
  • [2] Kobayashi’s and Teichmüller’s metrics on the Teichmüller space of symmetric circle homeomorphisms
    Jun Hu
    Yun Ping Jiang
    Zhe Wang
    Acta Mathematica Sinica, English Series, 2011, 27 : 617 - 624
  • [3] On F(p,s)-Teichmüller Space
    Shu-an TANG
    Journal of Mathematical Research with Applications, 2020, 40 (04) : 381 - 386
  • [4] Teichmüller's extremal ring problem
    Ville Heikkala
    Matti Vuorinen
    Mathematische Zeitschrift, 2006, 254 : 509 - 529
  • [5] Teichmüller contraction in the Teichmüller space of a closed set in the sphere
    Sudeb Mitra
    Israel Journal of Mathematics, 2001, 125 : 45 - 51
  • [6] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    Inventiones mathematicae, 2021, 224 : 791 - 916
  • [7] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    Geometriae Dedicata, 2008, 137 : 113 - 141
  • [8] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [9] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    Mathematische Zeitschrift, 2022, 302 : 2233 - 2251
  • [10] A quantum Teichmüller space
    V. V. Fock
    L. O. Chekhov
    Theoretical and Mathematical Physics, 1999, 120 : 1245 - 1259