Distribution of Nonlinear Congruential Pseudorandom Numbers Modulo Almost Squarefree Integers

被引:0
|
作者
Edwin D. El-Mahassni
Igor E. Shparlinski
Arne Winterhof
机构
[1] Defence Science & Technology Organisation,
[2] Macquarie University,undefined
[3] Johann Radon Institute for Computational and Applied Mathematics,undefined
来源
关键词
2000 Mathematics Subject Classifications: 11K45, 11L07, 65C10; Key words: Pseudorandom numbers, nonlinear congruential method, discrepancy, exponential sums;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear congruential method is an attractive alternative to the classical linear congruential method for pseudorandom number generation. In this paper we present a new bound on the s-dimensional discrepancy of nonlinear congruential pseudorandom numbers over the residue ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb Z}_M$\end{document} modulo M for an “almost squarefree” integer M. It is useful to recall that almost all integers are of this type. Moreover, if the generator is associated with a permutation polynomial over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb Z}_M$\end{document} we obtain a stronger bound “on average” over all initial values. This bound is new even in the case when M = p is prime.
引用
收藏
页码:297 / 307
页数:10
相关论文
共 50 条
  • [1] Distribution of nonlinear congruential pseudorandom numbers modulo almost squarefree integers
    El-Mahassni, Edwin D.
    Shparlinski, Igor E.
    Winterhof, Arne
    [J]. MONATSHEFTE FUR MATHEMATIK, 2006, 148 (04): : 297 - 307
  • [2] On the distribution and lattice structure of nonlinear congruential pseudorandom numbers
    Niederreiter, H
    Shparlinski, IE
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 1999, 5 (03) : 246 - 253
  • [3] On the distribution of nonlinear congruential pseudorandom numbers in residue rings
    El-Mahassni, Edwin D.
    Winterhof, Arne
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2006, 2 (01) : 163 - 168
  • [4] On the distribution of some new explicit nonlinear congruential pseudorandom numbers
    Niederreiter, H
    Winterhof, A
    [J]. SEQUENCES AND THEIR APPLICATIONS - SETA 2004, 2005, 3486 : 266 - 274
  • [5] COMPOUND NONLINEAR CONGRUENTIAL PSEUDORANDOM NUMBERS
    EICHENAUERHERRMANN, J
    [J]. MONATSHEFTE FUR MATHEMATIK, 1994, 117 (3-4): : 213 - 222
  • [6] On the distribution of nonlinear recursive congruential pseudorandom numbers of higher orders
    Griffin, F
    Niederreiter, H
    Shparlinski, IE
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 1999, 1719 : 87 - 93
  • [7] DISTRIBUTION OF SHORT SUBSEQUENCES OF INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS MODULO 2t
    Merai, Laszlo
    Shparlinski, Igor E.
    [J]. MATHEMATICS OF COMPUTATION, 2020, 89 (322) : 911 - 922
  • [8] STATISTICAL INDEPENDENCE OF NONLINEAR CONGRUENTIAL PSEUDORANDOM NUMBERS
    NIEDERREITER, H
    [J]. MONATSHEFTE FUR MATHEMATIK, 1988, 106 (02): : 149 - 159
  • [9] On the Distribution of Nonlinear Congruential Pseudorandom Numbers of Higher Orders in Residue Rings
    El-Mahassni, Edwin D.
    Gomez, Domingo
    [J]. APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 195 - +
  • [10] On the Distribution of Compound Inversive Congruential Pseudorandom Numbers
    Harald Niederreiter
    Arne Winterhof
    [J]. Monatshefte für Mathematik, 2001, 132 : 35 - 48