Distribution of nonlinear congruential pseudorandom numbers modulo almost squarefree integers

被引:9
|
作者
El-Mahassni, Edwin D.
Shparlinski, Igor E.
Winterhof, Arne
机构
[1] Def Sci & Technol Org, Elect Warfare & Radar Div, Edinburgh, SA, Australia
[2] Macquarie Univ, Dept Comp, N Ryde, NSW, Australia
[3] Austrian Acad Sci, Johann Rodon Inst Computat & Appl Math, A-4040 Linz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2006年 / 148卷 / 04期
关键词
pseudorandom numbers; nonlinear congruential method; discrepancy; exponential sums;
D O I
10.1007/s00605-005-0355-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nonlinear congruential method is an attractive alternative to the classical linear congruential method for pseudorandom number generation. In this paper we present a new bound on the s-dimensional discrepancy of nonlinear congruential pseudorandom numbers over the residue ring Z(M) modulo M for an "almost squarefree'' integer M. It is useful to recall that almost all integers are of this type. Moreover, if the generator is associated with a permutation polynomial over ZM we obtain a stronger bound "on average'' over all initial values. This bound is new even in the case when M p is prime.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 50 条