Distribution of Nonlinear Congruential Pseudorandom Numbers Modulo Almost Squarefree Integers

被引:0
|
作者
Edwin D. El-Mahassni
Igor E. Shparlinski
Arne Winterhof
机构
[1] Defence Science & Technology Organisation,
[2] Macquarie University,undefined
[3] Johann Radon Institute for Computational and Applied Mathematics,undefined
来源
关键词
2000 Mathematics Subject Classifications: 11K45, 11L07, 65C10; Key words: Pseudorandom numbers, nonlinear congruential method, discrepancy, exponential sums;
D O I
暂无
中图分类号
学科分类号
摘要
The nonlinear congruential method is an attractive alternative to the classical linear congruential method for pseudorandom number generation. In this paper we present a new bound on the s-dimensional discrepancy of nonlinear congruential pseudorandom numbers over the residue ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb Z}_M$\end{document} modulo M for an “almost squarefree” integer M. It is useful to recall that almost all integers are of this type. Moreover, if the generator is associated with a permutation polynomial over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\Bbb Z}_M$\end{document} we obtain a stronger bound “on average” over all initial values. This bound is new even in the case when M = p is prime.
引用
收藏
页码:297 / 307
页数:10
相关论文
共 50 条