The nonlinear congruential method is an attractive alternative to the classical linear congruential method for pseudorandom number generation. In this paper we present a new bound on the s-dimensional discrepancy of nonlinear congruential pseudorandom numbers over the residue ring \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\Bbb Z}_M$\end{document} modulo M for an “almost squarefree” integer M. It is useful to recall that almost all integers are of this type. Moreover, if the generator is associated with a permutation polynomial over \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\Bbb Z}_M$\end{document} we obtain a stronger bound “on average” over all initial values. This bound is new even in the case when M = p is prime.