The new iteration methods for solving absolute value equations

被引:0
|
作者
Rashid Ali
Kejia Pan
机构
[1] Central South University,School of Mathematics and Statistics, HNP
来源
关键词
absolute value equation; iteration method; matrix splitting; linear complementarity problem; numerical experiment; 65F10; 65H10; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Many problems in operations research, management science, and engineering fields lead to the solution of absolute value equations. In this study, we propose two new iteration methods for solving absolute value equations Ax — |x| = b, where A ∈ ℝn×n is an M-matrix or strictly diagonally dominant matrix, b ∈ ℝn and x ∈ ℝn is an unknown solution vector. Furthermore, we discuss the convergence of the proposed two methods under suitable assumptions. Numerical experiments are given to verify the feasibility, robustness and effectiveness of our methods.
引用
收藏
页码:109 / 122
页数:13
相关论文
共 50 条
  • [21] New smoothing function for solving absolute value equations
    Chalekh, Randa
    Djeffal, El Amir
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)
  • [22] A New Iterative Method for Solving Absolute Value Equations
    Jing, Li
    Fei, Qin
    Jie, Liu
    Bin, Zhou
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 555 - 556
  • [23] Flexible Operator Splitting Methods for Solving Absolute Value Equations
    Chen, Yongxin
    Han, Deren
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [24] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Chen, Cairong
    Huang, Bo
    Yu, Dongmei
    Han, Deren
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 799 - 826
  • [25] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Cairong Chen
    Bo Huang
    Dongmei Yu
    Deren Han
    Numerical Algorithms, 2024, 96 : 799 - 826
  • [26] On rediscovered iteration methods for solving equations
    Univ of Nis, Nis, Yugoslavia
    J Comput Appl Math, 2 (275-284):
  • [28] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    Wang, An
    Cao, Yang
    Chen, Jing-Xian
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (01) : 216 - 230
  • [29] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    An Wang
    Yang Cao
    Jing-Xian Chen
    Journal of Optimization Theory and Applications, 2019, 181 : 216 - 230
  • [30] New matrix splitting iteration method for generalized absolute value equations
    Zhao, Wan-Chen
    Shao, Xin-Hui
    AIMS MATHEMATICS, 2023, 8 (05): : 10558 - 10578