Optimal parameter of the SOR-like iteration method for solving absolute value equations

被引:0
|
作者
Cairong Chen
Bo Huang
Dongmei Yu
Deren Han
机构
[1] Fujian Normal University,School of Mathematics and Statistics & Key Laboratory of Analytical Mathematics and Applications (Ministry of Education) & Fujian Provincial Key Laboratory of Statistics and Artificial Intelligence & Fujian Key Laboratory of Analyt
[2] Liaoning Technical University,Institute for Optimization and Decision Analytics
[3] Beihang University,LMIB
来源
Numerical Algorithms | 2024年 / 96卷
关键词
Absolute value equations; SOR-like iteration method; Optimal iteration parameter; Convergence condition; 65F10; 65H10; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
The SOR-like iteration method for solving the system of absolute value equations of finding a vector x such that Ax-|x|-b=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax - |x| - b = 0$$\end{document} with ν=‖A-1‖2<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu = \Vert A^{-1}\Vert _2 < 1$$\end{document} is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma (Appl. Math. Comput., 311:195–202, 2017) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} with Tν(ω)=|1-ω|ω2ν|1-ω||1-ω|+ω2ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\nu (\omega ) = \left( \begin{array}{cc} |1-\omega | &{} \omega ^2\nu \\ |1-\omega | &{} |1-\omega | +\omega ^2\nu \end{array}\right) \end{aligned}$$\end{document}and the approximate optimal parameter which minimizes an upper bound of ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} are explored. The optimal and approximate optimal parameters are iteration-independent, and the bigger value of ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is, the smaller convergent region of the iteration parameter ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo et al. (Appl. Math. Lett., 97:107–113, 2019).
引用
收藏
页码:799 / 826
页数:27
相关论文
共 50 条
  • [1] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Chen, Cairong
    Huang, Bo
    Yu, Dongmei
    Han, Deren
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 799 - 826
  • [2] On the SOR-like iteration method for solving absolute value equations
    Guo, Peng
    Wu, Shi-Liang
    Li, Cui-Xia
    APPLIED MATHEMATICS LETTERS, 2019, 97 : 107 - 113
  • [3] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [4] On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations
    Zhang, Yiming
    Yu, Dongmei
    Yuan, Yifei
    SYMMETRY-BASEL, 2023, 15 (03):
  • [5] A new SOR-like method for solving absolute value equations
    Dong, Xu
    Shao, Xin-Hui
    Shen, Hai-Long
    APPLIED NUMERICAL MATHEMATICS, 2020, 156 : 410 - 421
  • [6] Modified SOR-Like Method for Absolute Value Equations
    Li, Cui-Xia
    Wu, Shi-Liang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [7] A modified generalized SOR-like method for solving an absolute value equation
    Zhang, Jia-Lin
    Zhang, Guo-Feng
    Liang, Zhao-Zheng
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (09): : 1578 - 1595
  • [8] Generalized SOR-like iteration method for solving weakly nonlinear systems
    Zhang, Fujie
    Huang, Na
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (08) : 1579 - 1594
  • [9] SOR-Like Method for a New Generalized Absolute Value Equation
    Yang, Shuan
    Wu, Shi-Liang
    MATHEMATICAL NOTES, 2023, 113 (3-4) : 567 - 573
  • [10] A modified SOR-like method for absolute value equations associated with second order cones
    Huang, Baohua
    Li, Wen
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 400