Optimal parameter of the SOR-like iteration method for solving absolute value equations

被引:0
|
作者
Cairong Chen
Bo Huang
Dongmei Yu
Deren Han
机构
[1] Fujian Normal University,School of Mathematics and Statistics & Key Laboratory of Analytical Mathematics and Applications (Ministry of Education) & Fujian Provincial Key Laboratory of Statistics and Artificial Intelligence & Fujian Key Laboratory of Analyt
[2] Liaoning Technical University,Institute for Optimization and Decision Analytics
[3] Beihang University,LMIB
来源
Numerical Algorithms | 2024年 / 96卷
关键词
Absolute value equations; SOR-like iteration method; Optimal iteration parameter; Convergence condition; 65F10; 65H10; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
The SOR-like iteration method for solving the system of absolute value equations of finding a vector x such that Ax-|x|-b=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax - |x| - b = 0$$\end{document} with ν=‖A-1‖2<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu = \Vert A^{-1}\Vert _2 < 1$$\end{document} is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma (Appl. Math. Comput., 311:195–202, 2017) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} with Tν(ω)=|1-ω|ω2ν|1-ω||1-ω|+ω2ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\nu (\omega ) = \left( \begin{array}{cc} |1-\omega | &{} \omega ^2\nu \\ |1-\omega | &{} |1-\omega | +\omega ^2\nu \end{array}\right) \end{aligned}$$\end{document}and the approximate optimal parameter which minimizes an upper bound of ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} are explored. The optimal and approximate optimal parameters are iteration-independent, and the bigger value of ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is, the smaller convergent region of the iteration parameter ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo et al. (Appl. Math. Lett., 97:107–113, 2019).
引用
收藏
页码:799 / 826
页数:27
相关论文
共 50 条
  • [41] A new SOR-Like method for the saddle point problems
    Zheng, Qingqing
    Ma, Changfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 421 - 429
  • [42] Accelerated SOR-like method for augmented linear systems
    Patrick Njue Njeru
    Xue-Ping Guo
    BIT Numerical Mathematics, 2016, 56 : 557 - 571
  • [43] An accelerated symmetric SOR-like method for augmented systems
    Li, Cheng-Liang
    Ma, Chang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 341 : 408 - 417
  • [44] The Picard–HSS iteration method for absolute value equations
    Davod Khojasteh Salkuyeh
    Optimization Letters, 2014, 8 : 2191 - 2202
  • [45] An SOR-Like Method for Fast Model Predictive Control
    Blanchard, Haley A.
    Adegbege, Ambrose A.
    IFAC PAPERSONLINE, 2017, 50 (01): : 14418 - 14423
  • [46] ON THE EFFICIENCY OF A SOR-LIKE METHOD SUITED TO VECTOR PROCESSORS
    SUGIHARA, M
    OYANAGI, Y
    MORI, M
    FUJINO, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 35 (1-3) : 33 - 51
  • [47] Shift-splitting fixed point iteration method for solving generalized absolute value equations
    Li, Xu
    Li, Yi-Xin
    Dou, Yan
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 695 - 710
  • [48] Shift-splitting fixed point iteration method for solving generalized absolute value equations
    Xu Li
    Yi-Xin Li
    Yan Dou
    Numerical Algorithms, 2023, 93 : 695 - 710
  • [49] On an iterative method for solving absolute value equations
    Noor, Muhammad Aslam
    Iqbal, Javed
    Noor, Khalida Inayat
    Al-Said, Eisa
    OPTIMIZATION LETTERS, 2012, 6 (05) : 1027 - 1033
  • [50] On an iterative method for solving absolute value equations
    Muhammad Aslam Noor
    Javed Iqbal
    Khalida Inayat Noor
    Eisa Al-Said
    Optimization Letters, 2012, 6 : 1027 - 1033