Optimal parameter of the SOR-like iteration method for solving absolute value equations

被引:0
|
作者
Cairong Chen
Bo Huang
Dongmei Yu
Deren Han
机构
[1] Fujian Normal University,School of Mathematics and Statistics & Key Laboratory of Analytical Mathematics and Applications (Ministry of Education) & Fujian Provincial Key Laboratory of Statistics and Artificial Intelligence & Fujian Key Laboratory of Analyt
[2] Liaoning Technical University,Institute for Optimization and Decision Analytics
[3] Beihang University,LMIB
来源
Numerical Algorithms | 2024年 / 96卷
关键词
Absolute value equations; SOR-like iteration method; Optimal iteration parameter; Convergence condition; 65F10; 65H10; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
The SOR-like iteration method for solving the system of absolute value equations of finding a vector x such that Ax-|x|-b=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ax - |x| - b = 0$$\end{document} with ν=‖A-1‖2<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu = \Vert A^{-1}\Vert _2 < 1$$\end{document} is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma (Appl. Math. Comput., 311:195–202, 2017) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} with Tν(ω)=|1-ω|ω2ν|1-ω||1-ω|+ω2ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} T_\nu (\omega ) = \left( \begin{array}{cc} |1-\omega | &{} \omega ^2\nu \\ |1-\omega | &{} |1-\omega | +\omega ^2\nu \end{array}\right) \end{aligned}$$\end{document}and the approximate optimal parameter which minimizes an upper bound of ‖Tν(ω)‖2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T_\nu (\omega )\Vert _2$$\end{document} are explored. The optimal and approximate optimal parameters are iteration-independent, and the bigger value of ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} is, the smaller convergent region of the iteration parameter ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo et al. (Appl. Math. Lett., 97:107–113, 2019).
引用
收藏
页码:799 / 826
页数:27
相关论文
共 50 条
  • [21] The new iteration methods for solving absolute value equations
    Rashid Ali
    Kejia Pan
    Applications of Mathematics, 2023, 68 : 109 - 122
  • [22] New SOR-like methods for solving the Sylvester equation
    Kierzkowski, Jakub
    OPEN MATHEMATICS, 2015, 13 (01): : 178 - 187
  • [23] Minimum Residual BAS Iteration Method for Solving the System of Absolute Value Equations
    Dai, Yan-Xia
    Yan, Ren-Yi
    Yang, Ai-Li
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [24] A generalization of the Gauss-Seidel iteration method for solving absolute value equations
    Edalatpour, Vahid
    Hezari, Davod
    Salkuyeh, Davod Khojasteh
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 156 - 167
  • [25] A modified fixed point iteration method for solving the system of absolute value equations
    Yu, Dongmei
    Chen, Cairong
    Han, Deren
    OPTIMIZATION, 2022, 71 (03) : 449 - 461
  • [26] A Preconditioner for the SOR-like Method for the Augmented Systems
    Salkuyeh, Davod Khojasteh
    Shamsi, Somayyeh
    CHIANG MAI JOURNAL OF SCIENCE, 2012, 39 (02): : 191 - 199
  • [27] A note on the convergence of the SOR-like Weierstrass method
    Kyurkchiev, N
    INCLUSION METHODS FOR NONLINEAR PROBLEMS: WITH APPLICATIONS IN ENGINEERING, ECONOMICS AND PHYSICS, 2003, 16 : 143 - 149
  • [28] On nonlinear SOR-like methods, II - Convergence of the SOR-Newton method for mildly nonlinear equations
    Ishihara K.
    Muroya Y.
    Yamamoto T.
    Japan Journal of Industrial and Applied Mathematics, 1997, 14 (1) : 99 - 110
  • [29] A note on an SOR-like method for augmented systems
    Li, CJ
    Li, Z
    Evans, DJ
    Zhang, T
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (04) : 581 - 592
  • [30] A modified SOR-like method for the augmented systems
    Guo, Peng
    Li, Cui-xia
    Wu, Shi-liang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 274 : 58 - 69