Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations

被引:56
|
作者
Wang, An [1 ]
Cao, Yang [2 ]
Chen, Jing-Xian [3 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
[2] Nantong Univ, Sch Transportat, Nantong 226019, Peoples R China
[3] Nantong Univ, Sch Business, Nantong 226019, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized absolute value equations; Newton method; Convergence; Differential function; LINEAR COMPLEMENTARITY; CONVERGENCE; ALGORITHM;
D O I
10.1007/s10957-018-1439-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, by separating the differential and the non-differential parts of the generalized absolute value equations, a class of modified Newton-type iteration methods are proposed. The modified Newton-type iteration method involves the well-known Picard iteration method as the special case. Convergence properties of the new iteration schemes are analyzed in detail. In particular, some specific sufficient conditions are presented for two special coefficient matrices. Finally, two numerical examples are given to illustrate the effectiveness of the proposed modified Newton-type iteration methods.
引用
收藏
页码:216 / 230
页数:15
相关论文
共 50 条
  • [1] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    An Wang
    Yang Cao
    Jing-Xian Chen
    Journal of Optimization Theory and Applications, 2019, 181 : 216 - 230
  • [2] Convergence of the modified Newton-type iteration method for the generalized absolute value equation
    Fang, Ximing
    Huang, Minhai
    ARABIAN JOURNAL OF MATHEMATICS, 2025, : 29 - 37
  • [3] A Newton-type technique for solving absolute value equations
    Khan, Alamgir
    Iqbal, Javed
    Akgul, Ali
    Ali, Rashid
    Du, Yuting
    Hussain, Arafat
    Nisar, Kottakkaran Sooppy
    Vijayakumar, V.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 64 : 291 - 296
  • [4] A relaxed generalized Newton iteration method for generalized absolute value equations
    Cao, Yang
    Shi, Quan
    Zhu, Sen-Lai
    AIMS MATHEMATICS, 2021, 6 (02): : 1258 - 1275
  • [5] Relaxed modified Newton-based iteration method for generalized absolute value equations
    Shao, Xin-Hui
    Zhao, Wan-Chen
    AIMS MATHEMATICS, 2023, 8 (02): : 4714 - 4725
  • [6] A dimension expanded Newton-type method for absolute value equations
    Luo, Wei-Hua
    Guo, Jun
    Yin, Liang
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 3219 - 3233
  • [7] A modified Newton-based matrix splitting iteration method for generalized absolute value equations
    Zhou, Chen-Can
    Cao, Yang
    Shen, Qin-Qin
    Shi, Quan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [8] A Modified Generalized Newton Method for Absolute Value Equations
    Li, Cui-Xia
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (03) : 1055 - 1059
  • [9] A Modified Generalized Newton Method for Absolute Value Equations
    Cui-Xia Li
    Journal of Optimization Theory and Applications, 2016, 170 : 1055 - 1059
  • [10] Newton-type methods for quasidifferentiable equations
    Zhang, LW
    Xia, ZQ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 108 (02) : 439 - 456