Relaxed modified Newton-based iteration method for generalized absolute value equations

被引:2
|
作者
Shao, Xin-Hui [1 ]
Zhao, Wan-Chen [1 ]
机构
[1] Northeastern Univ, Coll Sci, Dept Math, Shenyang 110819, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 02期
关键词
generalized absolute value equation; relaxation; Newton-based method; convergence; COMPLEMENTARITY; CONVERGENCE; MODEL;
D O I
10.3934/math.2023233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many problems in different fields may lead to solutions of absolute value equations, such as linear programming problems, linear complementarity problems, quadratic programming, mixed integer programming, the bimatrix game and so on. In this paper, by introducing a nonnegative real parameter to the modified Newton-based iteration scheme, we present a new relaxed modified Newton-based (RMN) iteration method for solving generalized absolute value equations. The famous Picard iteration method and the modified Newton-type iteration method are the exceptional cases of the RMN iteration method. The convergence property of the new method is discussed. Finally, the validity and feasibility of the RMN iteration method are verified by experimental examples.
引用
收藏
页码:4714 / 4725
页数:12
相关论文
共 50 条
  • [1] A modified Newton-based matrix splitting iteration method for generalized absolute value equations
    Zhou, Chen-Can
    Cao, Yang
    Shen, Qin-Qin
    Shi, Quan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [2] A relaxed generalized Newton iteration method for generalized absolute value equations
    Cao, Yang
    Shi, Quan
    Zhu, Sen-Lai
    [J]. AIMS MATHEMATICS, 2021, 6 (02): : 1258 - 1275
  • [3] An Improved Convergence Theorem of the Newton-Based AOR Method for Generalized Absolute Value Equations
    Chen, Raojie
    Peng, Xiaofei
    Yu, Wensong
    [J]. SYMMETRY-BASEL, 2022, 14 (06):
  • [4] A Modified Generalized Newton Method for Absolute Value Equations
    Li, Cui-Xia
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (03) : 1055 - 1059
  • [5] A Modified Generalized Newton Method for Absolute Value Equations
    Cui-Xia Li
    [J]. Journal of Optimization Theory and Applications, 2016, 170 : 1055 - 1059
  • [6] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    An Wang
    Yang Cao
    Jing-Xian Chen
    [J]. Journal of Optimization Theory and Applications, 2019, 181 : 216 - 230
  • [7] Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations
    Wang, An
    Cao, Yang
    Chen, Jing-Xian
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 181 (01) : 216 - 230
  • [8] Newton-based matrix splitting method for generalized absolute value equation
    Zhou, Hong-Yu
    Wu, Shi-Liang
    Li, Cui-Xia
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 394
  • [9] AN INEXACT RELAXED GENERALIZED NEWTON ITERATIVE METHOD FOR SOLVING GENERALIZED ABSOLUTE VALUE EQUATIONS
    Yu, Dongmei
    Zhang, Yiming
    Yuan, Yifei
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (01): : 23 - 44
  • [10] A generalized Newton method for absolute value equations
    O. L. Mangasarian
    [J]. Optimization Letters, 2009, 3 : 101 - 108