Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation

被引:0
|
作者
Jong Yeoul Park
Sun Hye Park
机构
[1] Busan National University,Department of Mathematics
来源
关键词
asymptotic stability; viscoelastic problems; boundary dissipation; wave equation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the damped semilinear viscoelastic wave equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u'' - \Delta u + \int_0^t h (t - \tau ) div\{ a\nabla u(\tau )\} d\tau + g(u') = 0 in \Omega \times (0,\infty )$$ \end{document} with nonlocal boundary dissipation. The existence of global solutions is proved by means of the Faedo-Galerkin method and the uniform decay rate of the energy is obtained by following the perturbed energy method provided that the kernel of the memory decays exponentially.
引用
收藏
页码:273 / 286
页数:13
相关论文
共 50 条
  • [1] Existence and asymptotic stability for viscoelastic problems with nonlocal boundary dissipation
    Park, Jong Yeoul
    Park, Sun Hye
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (02) : 273 - 286
  • [2] Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds
    Andrade, D
    Cavalcanti, MA
    Cavalcanti, VND
    Oquendo, HP
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2006, 8 (02) : 173 - 193
  • [3] Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation
    Cavalcanti, MM
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2002, 8 (03): : 675 - 695
  • [4] PARAMETRIC ANISOTROPIC DOUBLE PHASE FREE BOUNDARY PROBLEMS WITH NONLOCAL TERMS AND CONVECTION: EXISTENCE, STABILITY AND ASYMPTOTIC BEHAVIOR
    Cen, Jinxia
    Gasinski, Leszek
    Vetro, Calogero
    Zeng, Shengda
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (11): : 3014 - 3034
  • [5] On the asymptotic stability for Kirchhoff plates with viscoelastic dissipation
    Franchi, Franca
    Lazzari, Barbara
    Nibbi, Roberta
    [J]. MECCANICA, 2018, 53 (1-2) : 295 - 304
  • [6] On the asymptotic stability for Kirchhoff plates with viscoelastic dissipation
    Franca Franchi
    Barbara Lazzari
    Roberta Nibbi
    [J]. Meccanica, 2018, 53 : 295 - 304
  • [7] Existence and stability results for nonlocal boundary value problems of fractional order
    Vedat Suat Ertürk
    Amjad Ali
    Kamal Shah
    Pushpendra Kumar
    Thabet Abdeljawad
    [J]. Boundary Value Problems, 2022
  • [8] Existence and stability results for nonlocal boundary value problems of fractional order
    Erturk, Vedat Suat
    Ali, Amjad
    Shah, Kamal
    Kumar, Pushpendra
    Abdeljawad, Thabet
    [J]. BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [9] Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds, part II
    Andrade, D
    Cavalcanti, MM
    Cavalcanti, VND
    Oquendo, HP
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2006, 8 (03) : 287 - 301
  • [10] The Existence and Behavior of Solutions for Nonlocal Boundary Problems
    Wang, Yuandi
    Zheng, Shengzhou
    [J]. BOUNDARY VALUE PROBLEMS, 2009,