Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds

被引:0
|
作者
Andrade, D [1 ]
Cavalcanti, MA
Cavalcanti, VND
Oquendo, HP
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[2] Univ Fed Parana, Dept Matemat, BR-81531990 Curitiba, Parana, Brazil
关键词
asymptotic stability; viscoelastic evolution problem;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
One considers the nonlinear viscoelastic evolution equation u(tt) + Au + F(x,t,u,u(t)) - g * Au = 0 on Gamma x (0, infinity) where Gamma is a compact manifold. When F not equal 0 and g = 0 we prove existence of global solutions as well as uniform (exponential and algebraic) decay rates. Furthermore, if F = 0 and g not equal 0 we prove that the dissipation introduced by the memory effect is strong enough to allow us to derive an exponential( or polynornial) decay rate provided the resolvent kernel of the relaxation function decays exponentially (or polynomially).
引用
收藏
页码:173 / 193
页数:21
相关论文
共 50 条