Existence and asymptotic stability for viscoelastic evolution problems on compact manifolds, part II

被引:0
|
作者
Andrade, D [1 ]
Cavalcanti, MM
Cavalcanti, VND
Oquendo, HP
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
[2] Univ Fed Parana, Dept Matemat, BR-81531900 Curibata, PR, Brazil
关键词
asymptotic stability; viscoelastic evolution problem;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The present paper makes a further study on the existence and stabilization in a earlier article (J. Concr. Appl. Math). One considers the nonlinear viscoelastic evolution equation u(tt) + Au + F(x,t,u,u(t)) - g* A u = 0 on Gamma x (0, infinity) where Gamma is a compact manifold. When F not equal 0 and g not equal 0 we prove existence of global solutions as well as uniform (exponential and algebraic) decay rates, provided the kernel of the memory decays exponentially and F satisfies suitable growth assumptions.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 47 条