Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation

被引:40
|
作者
Cavalcanti, MM [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
Euler-Bernoulli; memory; boundary feedback;
D O I
10.3934/dcds.2002.8.675
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The linear Euler-Bernoulli viscoelastic equation u(tt) + Delta(2)u - integral(o)(t) g(t - tau)Delta(2)u(tau)dtau=0 in Omega x (0, infinity) subject to nonlinear boundary conditions is considered. We prove existence and uniform decay rates of the energy by assuming a nonlinear and nonlocal feedback acting on the boundary and provided that the kernel of the memory decays exponentially.
引用
收藏
页码:675 / 695
页数:21
相关论文
共 50 条