On marginal deformations and non-integrability

被引:0
|
作者
Dimitrios Giataganas
Leopoldo A. Pando Zayas
Konstantinos Zoubos
机构
[1] National Technical University of Athens,Physics Division
[2] University of Athens,Department of Physics
[3] University of Michigan,Michigan Center for Theoretical Physics
[4] University of Pretoria,Department of Physics
[5] ,undefined
关键词
AdS-CFT Correspondence; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study the interplay between a particular marginal deformation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super Yang-Mills theory, the β deformation, and integrability in the holographic setting. Using modern methods of analytic non-integrability of Hamiltonian systems, we find that, when the β parameter takes imaginary values, classical string trajectories on the dual background become non-integrable. We expect the same to be true for generic complex β parameter. By exhibiting the Poincaré sections and phase space trajectories for the generic complex β case, we provide numerical evidence of strong sensitivity to initial conditions. Our findings agree with expectations from weak coupling that the complex β deformation is non-integrable and provide a rigorous argument beyond the trial and error approach to non-integrability.
引用
收藏
相关论文
共 50 条
  • [1] On marginal deformations and non-integrability
    Giataganas, Dimitrios
    Zayas, Leopoldo A. Pando
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [2] Integrability and non-integrability for marginal deformations of 4d N=2 SCFTs
    Pal, Jitendra
    Roychowdhury, Sourav
    Lala, Arindam
    Roychowdhury, Dibakar
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (10):
  • [3] Integrability, non-integrability and confinement
    Mussardo, G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [4] Integrability and non-integrability in quantum mechanics
    Kus, M
    JOURNAL OF MODERN OPTICS, 2002, 49 (12) : 1979 - 1985
  • [5] Automorphisms and non-integrability
    Pereira, JV
    Sánchez, PF
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (03): : 379 - 385
  • [6] INTEGRABILITY AND NON-INTEGRABILITY IN HAMILTONIAN-MECHANICS
    KOZLOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (01) : 1 - 76
  • [7] Integrability and Non-integrability of Hamiltonian Normal Forms
    Ferdinand Verhulst
    Acta Applicandae Mathematicae, 2015, 137 : 253 - 272
  • [8] Integrability and Non-integrability of Hamiltonian Normal Forms
    Verhulst, Ferdinand
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 253 - 272
  • [9] Non-integrability of cylindric billiards
    Simányi, N
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 303 - 306
  • [10] Non-integrability by discrete quadratures
    Casale, Guy
    Roques, Julien
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 87 - 112