On marginal deformations and non-integrability

被引:52
|
作者
Giataganas, Dimitrios [1 ,2 ]
Zayas, Leopoldo A. Pando [3 ]
Zoubos, Konstantinos [4 ]
机构
[1] Natl Tech Univ Athens, Div Phys, Athens 15780, Greece
[2] Univ Athens, Dept Phys, Athens 15771, Greece
[3] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
[4] Univ Pretoria, Dept Phys, ZA-0028 Hatfield, South Africa
来源
关键词
AdS-CFT Correspondence; Conformal Field Models in String Theory; ADS/CFT INTEGRABILITY; HAMILTONIAN-SYSTEMS; 1ST INTEGRALS; STRINGS; NONEXISTENCE; LIMIT;
D O I
10.1007/JHEP01(2014)129
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the interplay between a particular marginal deformation of N = 4 super -Yang-Mills theory, the beta deformation, and integrability in the holographic setting. Using modern methods of analytic non-integrability of Hamiltonian systems, we find that, when the beta parameter takes imaginary values, classical string trajectories on the dual background become non-integrable. We expect the same to be true for generic complex beta parameter. By exhibiting the.Poincare sections and phase space trajectories for the generic complex beta case, we provide numerical evidence of strong sensitivity to initial conditions. Our findings agree with expectations from weak coupling that the complex beta deformation is non-integrable and provide a rigorous argument beyond the trial and error approach to non-integrability.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] On marginal deformations and non-integrability
    Dimitrios Giataganas
    Leopoldo A. Pando Zayas
    Konstantinos Zoubos
    Journal of High Energy Physics, 2014
  • [2] Integrability and non-integrability for marginal deformations of 4d N=2 SCFTs
    Pal, Jitendra
    Roychowdhury, Sourav
    Lala, Arindam
    Roychowdhury, Dibakar
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, (10):
  • [3] Integrability, non-integrability and confinement
    Mussardo, G.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [4] Integrability and non-integrability in quantum mechanics
    Kus, M
    JOURNAL OF MODERN OPTICS, 2002, 49 (12) : 1979 - 1985
  • [5] Automorphisms and non-integrability
    Pereira, JV
    Sánchez, PF
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2005, 77 (03): : 379 - 385
  • [6] INTEGRABILITY AND NON-INTEGRABILITY IN HAMILTONIAN-MECHANICS
    KOZLOV, VV
    RUSSIAN MATHEMATICAL SURVEYS, 1983, 38 (01) : 1 - 76
  • [7] Integrability and Non-integrability of Hamiltonian Normal Forms
    Ferdinand Verhulst
    Acta Applicandae Mathematicae, 2015, 137 : 253 - 272
  • [8] Integrability and Non-integrability of Hamiltonian Normal Forms
    Verhulst, Ferdinand
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 253 - 272
  • [9] Non-integrability of cylindric billiards
    Simányi, N
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 303 - 306
  • [10] Non-integrability by discrete quadratures
    Casale, Guy
    Roques, Julien
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 87 - 112