On marginal deformations and non-integrability

被引:52
|
作者
Giataganas, Dimitrios [1 ,2 ]
Zayas, Leopoldo A. Pando [3 ]
Zoubos, Konstantinos [4 ]
机构
[1] Natl Tech Univ Athens, Div Phys, Athens 15780, Greece
[2] Univ Athens, Dept Phys, Athens 15771, Greece
[3] Univ Michigan, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA
[4] Univ Pretoria, Dept Phys, ZA-0028 Hatfield, South Africa
来源
关键词
AdS-CFT Correspondence; Conformal Field Models in String Theory; ADS/CFT INTEGRABILITY; HAMILTONIAN-SYSTEMS; 1ST INTEGRALS; STRINGS; NONEXISTENCE; LIMIT;
D O I
10.1007/JHEP01(2014)129
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the interplay between a particular marginal deformation of N = 4 super -Yang-Mills theory, the beta deformation, and integrability in the holographic setting. Using modern methods of analytic non-integrability of Hamiltonian systems, we find that, when the beta parameter takes imaginary values, classical string trajectories on the dual background become non-integrable. We expect the same to be true for generic complex beta parameter. By exhibiting the.Poincare sections and phase space trajectories for the generic complex beta case, we provide numerical evidence of strong sensitivity to initial conditions. Our findings agree with expectations from weak coupling that the complex beta deformation is non-integrable and provide a rigorous argument beyond the trial and error approach to non-integrability.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] Non-integrability of ABC flow
    Maciejewski, A
    Przybylska, M
    PHYSICS LETTERS A, 2002, 303 (04) : 265 - 272
  • [12] NON-INTEGRABILITY OF THE SUSLOV PROBLEM
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 73 - 80
  • [13] Non-integrability of the Karabut system
    Christov, Ognyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 91 - 97
  • [14] Non-integrability in Hamiltonian mechanics
    Ichtiaroglou, S
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1996, 65 (1-2): : 21 - 31
  • [15] Non-integrability and chaos in classical cosmology
    Helmi, A
    Vucetich, H
    PHYSICS LETTERS A, 1997, 230 (3-4) : 153 - 156
  • [16] Non-integrability and chaos with unquenched flavor
    Giataganas, Dimitrios
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10):
  • [17] Non-integrability vs. integrability in pentagram maps
    Khesin, Boris
    Soloviev, Fedor
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 87 : 275 - 285
  • [18] Non-integrability in non-relativistic theories
    Dimitrios Giataganas
    Konstadinos Sfetsos
    Journal of High Energy Physics, 2014
  • [19] Analytic non-integrability of the Suslov problem
    Mahdi, Adam
    Valls, Claudia
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [20] On the non-integrability of Roy's system
    Hone, ANW
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1998, 111 (02): : 205 - 209