Analytic non-integrability of the Suslov problem

被引:3
|
作者
Mahdi, Adam [1 ,2 ,4 ]
Valls, Claudia [3 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Kraksow, Poland
[3] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[4] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
ABSENCE;
D O I
10.1063/1.4763464
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we consider the Suslov problem, which consists of a rotation motion of a rigid body, whose center of mass is located at one axis of inertia, around a fixed point O in a constant gravity field restricted to a nonholonomic constraint. The integrability and non-integrability has been established by a number of authors for the nongeneric values of b = (b(1), b(2), b(3)) which is the unit vector along the line connecting the point O with the center of mass of the body. Here, we prove the analytic non-integrability for the remaining (generic) values of b. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763464]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] NON-INTEGRABILITY OF THE SUSLOV PROBLEM
    Maciejewski, A. J.
    Przybylska, M.
    REGULAR & CHAOTIC DYNAMICS, 2002, 7 (01): : 73 - 80
  • [2] THE NON-INTEGRABILITY OF THE PERTURBED LAGRANGE PROBLEM
    SALNIKOVA, TV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1984, (04): : 62 - 66
  • [3] Hamiltonicity and integrability of the Suslov problem
    Alexey V. Borisov
    Alexander A. Kilin
    Ivan S. Mamaev
    Regular and Chaotic Dynamics, 2011, 16 : 104 - 116
  • [4] The geometry and integrability of the Suslov problem
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Zenkov, Dmitry V.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (11)
  • [5] Non-integrability of the dumbbell and point mass problem
    Maciejewski, Andrzej J.
    Przybylska, Maria
    Simpson, Leon
    Szuminski, Wojciech
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 117 (03): : 315 - 330
  • [6] Hamiltonicity and integrability of the Suslov problem
    Borisov, Alexey V.
    Kilin, Alexander A.
    Mamaev, Ivan S.
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2): : 104 - 116
  • [7] Non-integrability of Hill's lunar problem
    Meletlidou, E
    Ichtiaroglou, S
    Winterberg, FJ
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2001, 80 (02): : 145 - 156
  • [8] Non-integrability of the three-body problem
    Andrzej J. Maciejewski
    Maria Przybylska
    Celestial Mechanics and Dynamical Astronomy, 2011, 110 : 17 - 30
  • [9] Non-integrability of the three-body problem
    Maciejewski, Andrzej J.
    Przybylska, Maria
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2011, 110 (01): : 17 - 30
  • [10] Non-integrability of the dumbbell and point mass problem
    Andrzej J. Maciejewski
    Maria Przybylska
    Leon Simpson
    Wojciech Szumiński
    Celestial Mechanics and Dynamical Astronomy, 2013, 117 : 315 - 330