Analytic non-integrability of the Suslov problem

被引:3
|
作者
Mahdi, Adam [1 ,2 ,4 ]
Valls, Claudia [3 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Kraksow, Poland
[3] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
[4] AGH Univ Sci & Technol, Fac Appl Math, PL-30059 Krakow, Poland
关键词
ABSENCE;
D O I
10.1063/1.4763464
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we consider the Suslov problem, which consists of a rotation motion of a rigid body, whose center of mass is located at one axis of inertia, around a fixed point O in a constant gravity field restricted to a nonholonomic constraint. The integrability and non-integrability has been established by a number of authors for the nongeneric values of b = (b(1), b(2), b(3)) which is the unit vector along the line connecting the point O with the center of mass of the body. Here, we prove the analytic non-integrability for the remaining (generic) values of b. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763464]
引用
收藏
页数:8
相关论文
共 50 条
  • [31] On the non-integrability of the planar three body problem with equal masses
    Boucher, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (05): : 391 - 394
  • [32] Non-Integrability of the Problem of a Rigid Satellite in Gravitational and Magnetic Fields
    Andrzej J. Maciejewski
    Maria Przybylska
    Celestial Mechanics and Dynamical Astronomy, 2003, 87 : 317 - 351
  • [33] The meromorphic non-integrability of the planar three-body problem
    Tsygvintsev, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (03): : 241 - 244
  • [34] Non-integrability of cylindric billiards
    Simányi, N
    DYNAMICAL SYSTEMS: FROM CRYSTAL TO CHAOS, 2000, : 303 - 306
  • [35] Non-integrability by discrete quadratures
    Casale, Guy
    Roques, Julien
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 : 87 - 112
  • [36] On marginal deformations and non-integrability
    Dimitrios Giataganas
    Leopoldo A. Pando Zayas
    Konstantinos Zoubos
    Journal of High Energy Physics, 2014
  • [37] Non-integrability of ABC flow
    Maciejewski, A
    Przybylska, M
    PHYSICS LETTERS A, 2002, 303 (04) : 265 - 272
  • [38] On marginal deformations and non-integrability
    Giataganas, Dimitrios
    Zayas, Leopoldo A. Pando
    Zoubos, Konstantinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (01):
  • [39] Non-integrability of the Anisotropic Stormer Problem and the Isosceles Three-Body Problem
    Nomikos, D. G.
    Papageorgiou, V. G.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (03) : 273 - 289
  • [40] Non-integrability of the Karabut system
    Christov, Ognyan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 32 : 91 - 97