On marginal deformations and non-integrability

被引:0
|
作者
Dimitrios Giataganas
Leopoldo A. Pando Zayas
Konstantinos Zoubos
机构
[1] National Technical University of Athens,Physics Division
[2] University of Athens,Department of Physics
[3] University of Michigan,Michigan Center for Theoretical Physics
[4] University of Pretoria,Department of Physics
[5] ,undefined
关键词
AdS-CFT Correspondence; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study the interplay between a particular marginal deformation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super Yang-Mills theory, the β deformation, and integrability in the holographic setting. Using modern methods of analytic non-integrability of Hamiltonian systems, we find that, when the β parameter takes imaginary values, classical string trajectories on the dual background become non-integrable. We expect the same to be true for generic complex β parameter. By exhibiting the Poincaré sections and phase space trajectories for the generic complex β case, we provide numerical evidence of strong sensitivity to initial conditions. Our findings agree with expectations from weak coupling that the complex β deformation is non-integrable and provide a rigorous argument beyond the trial and error approach to non-integrability.
引用
收藏
相关论文
共 50 条
  • [21] NON-INTEGRABILITY OF A SYSTEM WITH THE DYSON POTENTIAL
    Georgiev, Georgi
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (09): : 1178 - 1185
  • [22] Integrability and non-integrability of periodic non-autonomous Lyness recurrences
    Cima, Anna
    Gasull, Armengol
    Manosa, Victor
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (04): : 518 - 538
  • [23] Non-integrability of a class of Hamiltonian systems
    Li, Wenlei
    Shi, Shaoyun
    Liu, Bing
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)
  • [24] Hyperbolicity and analytical non-integrability II
    Cresson, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03): : 229 - 232
  • [25] THE NON-INTEGRABILITY OF THE PERTURBED LAGRANGE PROBLEM
    SALNIKOVA, TV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1984, (04): : 62 - 66
  • [26] Non-integrability and chaos with unquenched flavor
    Dimitrios Giataganas
    Konstantinos Zoubos
    Journal of High Energy Physics, 2017
  • [27] ON DARBOUX NON-INTEGRABILITY OF HIETARINTA EQUATION
    Startsev, S. Ya
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 160 - 169
  • [28] Non-integrability of flail triple pendulum
    Przybylska, Maria
    Szuminski, Wojciech
    CHAOS SOLITONS & FRACTALS, 2013, 53 : 60 - 74
  • [29] Non-integrability in non-relativistic theories
    Giataganas, Dimitrios
    Sfetsos, Konstadinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):
  • [30] Non-integrability for general nonlinear systems
    S. Shi
    Y. Li
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2001, 52 : 191 - 200