On marginal deformations and non-integrability

被引:0
|
作者
Dimitrios Giataganas
Leopoldo A. Pando Zayas
Konstantinos Zoubos
机构
[1] National Technical University of Athens,Physics Division
[2] University of Athens,Department of Physics
[3] University of Michigan,Michigan Center for Theoretical Physics
[4] University of Pretoria,Department of Physics
[5] ,undefined
关键词
AdS-CFT Correspondence; Conformal Field Models in String Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study the interplay between a particular marginal deformation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super Yang-Mills theory, the β deformation, and integrability in the holographic setting. Using modern methods of analytic non-integrability of Hamiltonian systems, we find that, when the β parameter takes imaginary values, classical string trajectories on the dual background become non-integrable. We expect the same to be true for generic complex β parameter. By exhibiting the Poincaré sections and phase space trajectories for the generic complex β case, we provide numerical evidence of strong sensitivity to initial conditions. Our findings agree with expectations from weak coupling that the complex β deformation is non-integrable and provide a rigorous argument beyond the trial and error approach to non-integrability.
引用
收藏
相关论文
共 50 条
  • [31] Around Jouanolou non-integrability theorem
    Maciejewski, AJ
    Ollagnier, JM
    Nowicki, A
    Strelcyn, JM
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (02): : 239 - 254
  • [32] Non-Integrability of the Trapped Ionic System
    Georgiev, Georgi
    CHAOS SOLITONS & FRACTALS, 2021, 147
  • [33] Non-integrability for general nonlinear systems
    Shi, SY
    Li, Y
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (02): : 191 - 200
  • [34] Algebraic non-integrability of magnetic billiards
    Bialy, Misha
    Mironov, Andrey E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (45)
  • [35] Integrability and non-integrability of planar Hamiltonian systems of cosmological origin
    Maciejewski, AJ
    Szydlowski, M
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 200 - 206
  • [36] The non-integrability of a rotating elliptical billiard
    Kozlova, TV
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1998, 62 (01): : 81 - 85
  • [37] Non-integrability of restricted double pendula
    Stachowiak, Tomasz
    Szuminski, Wojciech
    PHYSICS LETTERS A, 2015, 379 (47-48) : 3017 - 3024
  • [38] Integrability and non-integrability in N=2 SCFTs and their holographic backgrounds
    Nunez, Carlos
    Roychowdhury, Dibakar
    Thompson, Daniel C.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (07):
  • [39] Integrability and Non-Integrability of Planar Hamiltonian Systems of Cosmological Origin
    Andrzej J Maciejewski
    Marek Szydłowski
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 200 - 206
  • [40] About algebraic integrability and non-integrability of ordinary differential equations
    Maciejewski, A.J.
    Chaos, solitons and fractals, 1998, 9 (1-2): : 51 - 65