Extended Newton-type method and its convergence analysis for nonsmooth generalized equations

被引:0
|
作者
M. H. Rashid
机构
[1] University of Rajshahi,Department of Mathematics
关键词
Generalized equation; Lipschitz-like mapping; extended Newton-type method; semilocal convergence; point based approximation; Primary 47H04; 90C30; Secondary 49J53; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
Let X and Y be Banach spaces and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be an open subset of X. Suppose that f:Ω⊆X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\Omega \subseteq X}\rightarrow {Y}$$\end{document} is a single-valued function which is nonsmooth and it has point based approximations on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and F:X⇉2Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:X\rightrightarrows 2^Y$$\end{document} is a set-valued mapping with closed graph. An extended Newton-type method is introduced in the present paper for solving the nonsmooth generalized equation 0∈f(x)+F(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in {f(x)+F(x)}$$\end{document}. Semilocal and local convergence of this method are analyzed based on the concept of point-based approximation.
引用
收藏
页码:1295 / 1313
页数:18
相关论文
共 50 条
  • [31] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Mordukhovich, Boris S.
    Yuan, Xiaoming
    Zeng, Shangzhi
    Zhang, Jin
    MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 899 - 936
  • [32] A globally convergent proximal Newton-type method in nonsmooth convex optimization
    Boris S. Mordukhovich
    Xiaoming Yuan
    Shangzhi Zeng
    Jin Zhang
    Mathematical Programming, 2023, 198 : 899 - 936
  • [33] Convergence criterion and convergence ball of the Newton-type method in banach space
    Zhang H.
    Li W.
    Journal of Applied Mathematics and Computing, 2009, 31 (1-2) : 129 - 143
  • [34] IMPROVED NEWTON-TYPE ALGORITHM FOR ADAPTIVE IMPLEMENTATION OF PISARENKO HARMONIC RETRIEVAL METHOD AND ITS CONVERGENCE ANALYSIS
    MATHEW, G
    DASGUPTA, S
    REDDY, VU
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (02) : 434 - 437
  • [35] Extended local convergence for Newton-type solver under weak conditions
    Argyros, Ioannis K.
    George, Santhosh
    Senapati, Kedarnath
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (04): : 757 - 768
  • [36] Convergence Analysis of the Gauss–Newton-Type Method for Lipschitz-Like Mappings
    M. H. Rashid
    S. H. Yu
    C. Li
    S. Y. Wu
    Journal of Optimization Theory and Applications, 2013, 158 : 216 - 233
  • [37] Hybrid Newton-Type Method for a Class of Semismooth Equations
    S. Pieraccini
    Journal of Optimization Theory and Applications, 2002, 112 : 381 - 402
  • [38] Hybrid Newton-type method for a class of semismooth equations
    Pieraccini, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (02) : 381 - 402
  • [39] Introduction to a Newton-type method for solving nonlinear equations
    Thukral, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 663 - 668
  • [40] On a Newton-Type Method for Differential-Algebraic Equations
    Amat, S.
    Legaz, M. J.
    Pedregal, P.
    JOURNAL OF APPLIED MATHEMATICS, 2012,