Extended Newton-type method and its convergence analysis for nonsmooth generalized equations

被引:0
|
作者
M. H. Rashid
机构
[1] University of Rajshahi,Department of Mathematics
关键词
Generalized equation; Lipschitz-like mapping; extended Newton-type method; semilocal convergence; point based approximation; Primary 47H04; 90C30; Secondary 49J53; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
Let X and Y be Banach spaces and Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} be an open subset of X. Suppose that f:Ω⊆X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\Omega \subseteq X}\rightarrow {Y}$$\end{document} is a single-valued function which is nonsmooth and it has point based approximations on Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and F:X⇉2Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:X\rightrightarrows 2^Y$$\end{document} is a set-valued mapping with closed graph. An extended Newton-type method is introduced in the present paper for solving the nonsmooth generalized equation 0∈f(x)+F(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in {f(x)+F(x)}$$\end{document}. Semilocal and local convergence of this method are analyzed based on the concept of point-based approximation.
引用
收藏
页码:1295 / 1313
页数:18
相关论文
共 50 条
  • [21] Newton-type method for solving generalized inclusion
    P. S. M. Santos
    G. N. Silva
    R. C. M. Silva
    Numerical Algorithms, 2021, 88 : 1811 - 1829
  • [22] METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD
    Rashid, Mohammed Harunor
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (01): : 44 - 69
  • [23] ON THE SEMILOCAL CONVERGENCE OF A NEWTON-TYPE METHOD OF ORDER THREE
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (01): : 1 - 27
  • [24] A new Newton-type method for solving nonlinear equations with any integer order of convergence
    Li, Zhong
    Peng, Chensong
    Zhou, Tianhe
    Gao, Jun
    Journal of Computational Information Systems, 2011, 7 (07): : 2371 - 2378
  • [25] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374
  • [26] On the convergence of a new Newton-type method in inverse scattering
    Potthast, R
    INVERSE PROBLEMS, 2001, 17 (05) : 1419 - 1434
  • [27] A Modified Newton-Type Method with Sixth-Order Convergence for Solving Nonlinear Equations
    Sun, Li
    Fang, Liang
    ADVANCES IN COMPUTER SCIENCE, ENVIRONMENT, ECOINFORMATICS, AND EDUCATION, PT IV, 2011, 217 : 470 - +
  • [28] A Modification of Newton-type Method with Sixth-order Convergence for Solving Nonlinear Equations
    Chen, Rui
    Fang, Liang
    MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 1839 - 1843
  • [29] A modified Newton-type method with sixth-order convergence for solving nonlinear equations
    Fang, Liang
    Chen, Tao
    Tian, Li
    Sun, Li
    Chen, Bin
    CEIS 2011, 2011, 15
  • [30] An efficient Newton-type method with fifth-order convergence for solving nonlinear equations
    Fang, Liang
    Sun, Li
    He, Guoping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (03): : 269 - 274