Phase fitted symplectic partitioned Runge–Kutta methods for the numerical integration of the Schrödinger equation

被引:0
|
作者
Th. Monovasilis
机构
[1] Technological Educational Institution of Western Macedonia at Kastoria,Department of International Trade
来源
关键词
Partitioned Runge Kutta methods; Symplectic methods; Schrödinger equation; Phase-lag; Phase-fitted;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we consider explicit symplectic partitioned Runge–Kutta methods with five stages for problems with separable Hamiltonian. We construct three new methods, one with constant coefficients of eight phase-lag order and two phase-fitted methods.
引用
收藏
页码:1736 / 1746
页数:10
相关论文
共 50 条
  • [21] A class of symplectic partitioned Runge-Kutta methods
    Gan, Siqing
    Shang, Zaijiu
    Sun, Geng
    APPLIED MATHEMATICS LETTERS, 2013, 26 (09) : 968 - 973
  • [22] Modified two-derivative Runge–Kutta methods for the Schrödinger equation
    Yanping Yang
    Yonglei Fang
    Xiong You
    Journal of Mathematical Chemistry, 2018, 56 : 799 - 812
  • [23] Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods
    Blanes, S
    Moan, PC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 142 (02) : 313 - 330
  • [24] Symplectic partitioned Runge-Kutta methods with the phase-lag property
    Monovasilis, Th
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9075 - 9084
  • [25] Symplectic Partitioned Runge-Kutta methods with minimal phase-lag
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1251 - 1254
  • [26] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1395 - 1398
  • [27] Exponentially Fitted Symplectic Runge-Kutta-Nystrom methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (01): : 81 - 85
  • [28] Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation
    T.E. Simos
    Journal of Mathematical Chemistry, 2004, 36 : 13 - 27
  • [29] A family of Runge-Kutta methods with zero phase-lag and derivatives for the numerical solution of the Schrödinger equation and related problems
    Z. A. Anastassi
    D. S. Vlachos
    T. E. Simos
    Journal of Mathematical Chemistry, 2009, 46
  • [30] Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Anastassi, ZA
    Simos, TE
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) : 281 - 293