Phase fitted symplectic partitioned Runge–Kutta methods for the numerical integration of the Schrödinger equation

被引:0
|
作者
Th. Monovasilis
机构
[1] Technological Educational Institution of Western Macedonia at Kastoria,Department of International Trade
来源
关键词
Partitioned Runge Kutta methods; Symplectic methods; Schrödinger equation; Phase-lag; Phase-fitted;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we consider explicit symplectic partitioned Runge–Kutta methods with five stages for problems with separable Hamiltonian. We construct three new methods, one with constant coefficients of eight phase-lag order and two phase-fitted methods.
引用
收藏
页码:1736 / 1746
页数:10
相关论文
共 50 条
  • [31] A fifth-order symplectic trigonometrically fitted partitioned Runge-Kutta method
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 313 - +
  • [32] Two modified symplectic partitioned Runge-Kutta methods for solving the elastic wave equation
    Su, Bo
    Tuo, Xianguo
    Xu, Ling
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2017, 14 (04) : 811 - 821
  • [33] A new modified embedded 5(4) pair of explicit Runge–Kutta methods for the numerical solution of the Schrödinger equation
    Shiwei Liu
    Juan Zheng
    Yonglei Fang
    Journal of Mathematical Chemistry, 2013, 51 : 937 - 953
  • [34] Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2006, 40 (03) : 257 - 267
  • [35] Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage LobattoIIIA Method
    Tan, Jiabo
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 1069 - 1073
  • [36] Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage RadauIA Method
    Tan, Jiabo
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 633 - 636
  • [37] Exponentially fitted symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, T
    Kalogiratou, Z
    Simos, TE
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) : 263 - 270
  • [38] Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods
    Kalogiratou, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7406 - 7412
  • [39] Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
    Jay, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 368 - 387
  • [40] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420