A plane graph G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} is entirely k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k$$\end{document}-choosable if, for every list L\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L$$\end{document} of colors satisfying L(x)=k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L(x)=k$$\end{document} for all x∈V(G)∪E(G)∪F(G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$x\in V(G)\cup E(G) \cup F(G)$$\end{document}, there exists a coloring which assigns to each vertex, each edge and each face a color from its list so that any adjacent or incident elements receive different colors. In 1993, Borodin proved that every plane graph G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G$$\end{document} with maximum degree Δ≥12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta \ge 12$$\end{document} is entirely (Δ+2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\Delta +2)$$\end{document}-choosable. In this paper, we improve this result by replacing 12 by 10.
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
W Virginia Univ, Dept Math, Morgantown, WV 26505 USAXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
Lai, H. J.
Omidi, G. R.
论文数: 0引用数: 0
h-index: 0
机构:
Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
Inst Res Fundamental Sci IPM, Sch Math, Tehran, IranXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
Omidi, G. R.
Raeisi, G.
论文数: 0引用数: 0
h-index: 0
机构:
Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, IranXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China