The entire choosability of plane graphs

被引:0
|
作者
Weifan Wang
Tingting Wu
Xiaoxue Hu
Yiqiao Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
来源
关键词
Plane graph; Entire choosability; Maximum degree;
D O I
暂无
中图分类号
学科分类号
摘要
A plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is entirely k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-choosable if, for every list L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} of colors satisfying L(x)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(x)=k$$\end{document} for all x∈V(G)∪E(G)∪F(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in V(G)\cup E(G) \cup F(G)$$\end{document}, there exists a coloring which assigns to each vertex, each edge and each face a color from its list so that any adjacent or incident elements receive different colors. In 1993, Borodin proved that every plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with maximum degree Δ≥12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \ge 12$$\end{document} is entirely (Δ+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta +2)$$\end{document}-choosable. In this paper, we improve this result by replacing 12 by 10.
引用
收藏
页码:1221 / 1240
页数:19
相关论文
共 50 条
  • [41] On Group Choosability of Total Graphs
    H. J. Lai
    G. R. Omidi
    G. Raeisi
    Graphs and Combinatorics, 2013, 29 : 585 - 597
  • [42] Choosability in signed planar graphs
    Jin, Ligang
    Kang, Yingli
    Steffen, Eckhard
    EUROPEAN JOURNAL OF COMBINATORICS, 2016, 52 : 234 - 243
  • [43] Linear choosability of sparse graphs
    Cranston, Daniel W.
    Yu, Gexin
    DISCRETE MATHEMATICS, 2011, 311 (17) : 1910 - 1917
  • [44] An Algebraic Criterion for the Choosability of Graphs
    Akbari, Saieed
    Kiani, Dariush
    Mohammadi, Fatemeh
    Moradi, Somayeh
    Rahmati, Farhad
    GRAPHS AND COMBINATORICS, 2015, 31 (03) : 497 - 506
  • [45] An Algebraic Criterion for the Choosability of Graphs
    Saieed Akbari
    Dariush Kiani
    Fatemeh Mohammadi
    Somayeh Moradi
    Farhad Rahmati
    Graphs and Combinatorics, 2015, 31 : 497 - 506
  • [46] On Group Choosability of Total Graphs
    Lai, H. J.
    Omidi, G. R.
    Raeisi, G.
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 585 - 597
  • [47] Circular consecutive choosability of graphs
    Lin, Wensong
    Yang, Daqing
    Yang, Chung-Ying
    Zhu, Xuding
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (04): : 951 - 968
  • [48] On the total choosability of planar graphs and of sparse graphs
    Chang, Gerard Jennhwa
    Hou, Jianfeng
    Roussel, Nicolas
    INFORMATION PROCESSING LETTERS, 2010, 110 (20) : 849 - 853
  • [49] Choosability and edge choosability of planar graphs without five cycles
    Wang, WF
    Lih, KW
    APPLIED MATHEMATICS LETTERS, 2002, 15 (05) : 561 - 565
  • [50] On incidence choosability of cubic graphs
    Kang, Sungsik
    Park, Boram
    DISCRETE MATHEMATICS, 2019, 342 (06) : 1828 - 1837