The entire choosability of plane graphs

被引:0
|
作者
Weifan Wang
Tingting Wu
Xiaoxue Hu
Yiqiao Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
来源
关键词
Plane graph; Entire choosability; Maximum degree;
D O I
暂无
中图分类号
学科分类号
摘要
A plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is entirely k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-choosable if, for every list L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} of colors satisfying L(x)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(x)=k$$\end{document} for all x∈V(G)∪E(G)∪F(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in V(G)\cup E(G) \cup F(G)$$\end{document}, there exists a coloring which assigns to each vertex, each edge and each face a color from its list so that any adjacent or incident elements receive different colors. In 1993, Borodin proved that every plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with maximum degree Δ≥12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \ge 12$$\end{document} is entirely (Δ+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta +2)$$\end{document}-choosable. In this paper, we improve this result by replacing 12 by 10.
引用
收藏
页码:1221 / 1240
页数:19
相关论文
共 50 条
  • [31] A note on adaptable choosability and choosability with separation of planar graphs
    Casselgren, Carl Johan
    Granholmt, Jonas B.
    Raspaud, André
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 101 - 109
  • [32] A NOTE ON FACE COLORING ENTIRE WEIGHTINGS OF PLANE GRAPHS
    Jendrol, Stanislav
    Sugerek, Peter
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (02) : 421 - 426
  • [33] Upper bounds of entire chromatic number of plane graphs
    Wang, WF
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (04) : 313 - 315
  • [34] Entire coloring of 2-connected plane graphs
    Wang, Weifan
    Hu, Xiaoxue
    Wang, Yiqiao
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 94
  • [35] Entire H-irregularity Strength of Plane Graphs
    Baca, Martin
    Hinding, Nurdin
    Javed, Aisha
    Semanicova-Fenovcikova, Andrea
    COMBINATORIAL ALGORITHMS, IWOCA 2017, 2018, 10765 : 3 - 12
  • [36] Majority choosability of countable graphs
    Anholcer, Marcin
    Bosek, Bartlomiej
    Grytczuk, Jaroslaw
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 117
  • [37] Free Choosability of Outerplanar Graphs
    Aubry, Yves
    Godin, Jean-Christophe
    Togni, Olivier
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 851 - 859
  • [38] Free Choosability of Outerplanar Graphs
    Yves Aubry
    Jean-Christophe Godin
    Olivier Togni
    Graphs and Combinatorics, 2016, 32 : 851 - 859
  • [39] Choosability and edge choosability of planar graphs without intersecting triangles
    Wang, WF
    Lih, KW
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) : 538 - 545
  • [40] On Group Choosability of Graphs, II
    Chuang, H.
    Lai, H. -J.
    Omidi, G. R.
    Wang, K.
    Zakeri, N.
    GRAPHS AND COMBINATORICS, 2014, 30 (03) : 549 - 563