The entire choosability of plane graphs

被引:0
|
作者
Weifan Wang
Tingting Wu
Xiaoxue Hu
Yiqiao Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
来源
关键词
Plane graph; Entire choosability; Maximum degree;
D O I
暂无
中图分类号
学科分类号
摘要
A plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is entirely k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-choosable if, for every list L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} of colors satisfying L(x)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(x)=k$$\end{document} for all x∈V(G)∪E(G)∪F(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in V(G)\cup E(G) \cup F(G)$$\end{document}, there exists a coloring which assigns to each vertex, each edge and each face a color from its list so that any adjacent or incident elements receive different colors. In 1993, Borodin proved that every plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with maximum degree Δ≥12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \ge 12$$\end{document} is entirely (Δ+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta +2)$$\end{document}-choosable. In this paper, we improve this result by replacing 12 by 10.
引用
收藏
页码:1221 / 1240
页数:19
相关论文
共 50 条
  • [21] Choosability of planar graphs
    Institut für Mathematik, TU Ilmenau, 98684 Ilmenau, Germany
    Discrete Math, 1-3 (457-460):
  • [22] A refinement of choosability of graphs
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 141 : 143 - 164
  • [23] Circular choosability of graphs
    Zhu, XD
    JOURNAL OF GRAPH THEORY, 2005, 48 (03) : 210 - 218
  • [24] Incidence choosability of graphs
    Benmedjdoub, Brahim
    Bouchemakh, Isma
    Sopena, Eric
    DISCRETE APPLIED MATHEMATICS, 2019, 265 : 40 - 55
  • [25] On the choosability of bipartite graphs
    Wang, Guoping
    Huang, Qiongxiang
    ARS COMBINATORIA, 2009, 90 : 289 - 293
  • [26] Girth and ?-choosability of graphs
    Gu, Yangyan
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 493 - 501
  • [27] Choosability of bipartite graphs
    Hanson, D
    MacGillivray, G
    Toft, B
    ARS COMBINATORIA, 1996, 44 : 183 - 192
  • [28] Linear choosability of graphs
    Esperet, Louis
    Montassier, Mickael
    Raspaud, Andre
    DISCRETE MATHEMATICS, 2008, 308 (17) : 3938 - 3950
  • [29] Choosability of planar graphs
    Voigt, M
    DISCRETE MATHEMATICS, 1996, 150 (1-3) : 457 - 460
  • [30] The edge-face choosability of plane graphs with maximum degree at least 9
    Hu, Xiaoxue
    Wang, Weifan
    Wang, Yiqiao
    DISCRETE MATHEMATICS, 2014, 327 : 1 - 8