The entire choosability of plane graphs

被引:0
|
作者
Weifan Wang
Tingting Wu
Xiaoxue Hu
Yiqiao Wang
机构
[1] Zhejiang Normal University,Department of Mathematics
[2] Beijing University of Chinese Medicine,School of Management
来源
关键词
Plane graph; Entire choosability; Maximum degree;
D O I
暂无
中图分类号
学科分类号
摘要
A plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is entirely k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-choosable if, for every list L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document} of colors satisfying L(x)=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(x)=k$$\end{document} for all x∈V(G)∪E(G)∪F(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in V(G)\cup E(G) \cup F(G)$$\end{document}, there exists a coloring which assigns to each vertex, each edge and each face a color from its list so that any adjacent or incident elements receive different colors. In 1993, Borodin proved that every plane graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} with maximum degree Δ≥12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \ge 12$$\end{document} is entirely (Δ+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\Delta +2)$$\end{document}-choosable. In this paper, we improve this result by replacing 12 by 10.
引用
收藏
页码:1221 / 1240
页数:19
相关论文
共 50 条
  • [1] The entire choosability of plane graphs
    Wang, Weifan
    Wu, Tingting
    Hu, Xiaoxue
    Wang, Yiqiao
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1221 - 1240
  • [2] A note on entire choosability of plane graphs
    Dong, Wei
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1257 - 1261
  • [3] Coupled choosability of plane graphs
    Wang, Weifan
    Lih, Ko-Wei
    JOURNAL OF GRAPH THEORY, 2008, 58 (01) : 27 - 44
  • [4] Entire choosability of near-outerplane graphs
    Hetherington, Timothy J.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2153 - 2165
  • [5] On structure of some plane graphs with application to choosability
    Lam, PCB
    Shiu, WC
    Xu, BG
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) : 285 - 296
  • [6] The edge-face choosability of plane graphs
    Wang, WF
    Lih, KW
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 935 - 948
  • [7] The 3-choosability of plane graphs of girth 4
    Lam, PCB
    Shiu, WC
    Song, ZM
    DISCRETE MATHEMATICS, 2005, 294 (03) : 297 - 301
  • [8] Entire colouring of plane graphs
    Wang, Weifan
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2011, 101 (06) : 490 - 501
  • [9] (4m, m)-CHOOSABILITY OF PLANE GRAPHS
    XU Baogang (Institute of Systems Sciences
    JournalofSystemsScienceandComplexity, 2001, (02) : 174 - 178
  • [10] On 3-choosability of triangle-free plane graphs
    Wang YingQian
    Zhang QiJun
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (06) : 1287 - 1298