H-convergence of multiplicable matrices

被引:0
|
作者
Sylvie Fabre
Jacqueline Mossino
机构
[1] C.M.L.A,
[2] Ecole Normale Supérieure de Cachan,undefined
[3] 61 Avenue du Président Wilson,undefined
[4] F-94235 Cachan Cedex,undefined
[5] France ,undefined
关键词
Mathematics Subject Classification (1991):35B27, 35B40, 73B27.;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to characterize the H-limit of multiplicable matrices, that is matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A^{\varepsilon}$\end{document} such that there exist \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M^{\varepsilon}, P^{\varepsilon}$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M^{\varepsilon} A^{\varepsilon} = P^{\varepsilon}$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M^{\varepsilon}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P^{\varepsilon}$\end{document} have specific dependence on coordinates. We prove that, under suitable assumptions, the H-limit is also multiplicable. We give examples generalizing both the “stratified case” of F. Murat and L. Tartar and the “isotropic factorizable case” of A. Marino and S. Spagnolo.
引用
下载
收藏
页码:125 / 139
页数:14
相关论文
共 50 条
  • [41] Convergence of block iterative methods for linear systems with generalized H-matrices
    Zhang, Cheng-yi
    Xu, Chengxian
    Luo, Shuanghua
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 70 - 84
  • [42] Convergence of relaxed multisplitting USAOR methods for H-matrices linear systems
    Zhang, Li-Tao
    Huang, Ting-Zhu
    Gu, Tong-Xiang
    Guo, Xin-Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (01) : 121 - 132
  • [43] Convergence analysis of the preconditioned Gauss-Seidel method for H-matrices
    Liu, Qingbing
    Chen, Guoliang
    Cai, Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) : 2048 - 2053
  • [44] Convergence of Relaxed Matrix Parallel Multisplitting Chaotic Methods for H-Matrices
    Zhang, Li-Tao
    Li, Jian-Lei
    Gu, Tong-Xiang
    Liu, Xing-Ping
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [45] Weak convergence in circulant matrices
    Cureg, E
    Mukherjea, A
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (04) : 983 - 1007
  • [46] On infinite matrices and lacunary σ-convergence
    Savas, Ekrem
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 1036 - 1040
  • [47] Infinite Matrices and Almost Convergence
    Ganie, Ab Hamid
    Sheikh, Neyaz Ahmad
    FILOMAT, 2015, 29 (06) : 1183 - 1188
  • [48] Weak Convergence in Circulant Matrices
    E. Cureg
    A. Mukherjea
    Journal of Theoretical Probability, 2005, 18 : 983 - 1007
  • [49] ON THE CONVERGENCE OF INFINITE PRODUCTS OF MATRICES
    ARTZROUNI, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 74 : 11 - 21
  • [50] PARTITIONED MATRICES AND SEIDEL CONVERGENCE
    BRENNER, JL
    PILLIS, JD
    NUMERISCHE MATHEMATIK, 1972, 19 (01) : 76 - &