H-convergence of multiplicable matrices

被引:0
|
作者
Sylvie Fabre
Jacqueline Mossino
机构
[1] C.M.L.A,
[2] Ecole Normale Supérieure de Cachan,undefined
[3] 61 Avenue du Président Wilson,undefined
[4] F-94235 Cachan Cedex,undefined
[5] France ,undefined
关键词
Mathematics Subject Classification (1991):35B27, 35B40, 73B27.;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to characterize the H-limit of multiplicable matrices, that is matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $A^{\varepsilon}$\end{document} such that there exist \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M^{\varepsilon}, P^{\varepsilon}$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M^{\varepsilon} A^{\varepsilon} = P^{\varepsilon}$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $M^{\varepsilon}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $P^{\varepsilon}$\end{document} have specific dependence on coordinates. We prove that, under suitable assumptions, the H-limit is also multiplicable. We give examples generalizing both the “stratified case” of F. Murat and L. Tartar and the “isotropic factorizable case” of A. Marino and S. Spagnolo.
引用
下载
收藏
页码:125 / 139
页数:14
相关论文
共 50 条
  • [31] H-convergence and homogenization of non-local elliptic operators in both perforated and non-perforated domains
    Balilescu, Loredana
    Ghosh, Amrita
    Ghosh, Tuhin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (06):
  • [32] Convergence for the MSOR iterative method applied H-matrices
    Wang, XM
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (04) : 469 - 479
  • [33] Convergence Theory of the Preconditioned SOR Method for H-Matrices
    Li, Aijuan
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 1642 - 1645
  • [34] Using H-Convergence to Calculate the Numerical Errors for 1D Unsaturated Seepage Under Steady-State Conditions
    Chapuis, Robert P.
    Taveau, Coline
    Duhaime, François
    Weber, Simon
    Marefat, Vahid
    Zhang, Lu
    Blessent, Daniela
    Bouaanani, Najib
    Pelletier, Dominique
    International Journal for Numerical and Analytical Methods in Geomechanics, 2025, 49 (01) : 345 - 358
  • [35] Approximated solutions of equations with L-1 data. Application to the H-convergence of quasi-linear parabolic equations.
    DallAglio, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 170 : 207 - 240
  • [37] Convergence of the modified Gauss-Seidel method for H-matrices
    Liu, Qingbing
    ICNC 2007: Third International Conference on Natural Computation, Vol 3, Proceedings, 2007, : 268 - 271
  • [38] Toeplitz matrices and convergence
    Mildenberger, H
    FUNDAMENTA MATHEMATICAE, 2000, 165 (02) : 175 - 189
  • [39] Qualitative convergence of matrices
    Pryporova, Olga
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (1-2) : 28 - 38
  • [40] Complex D convergence and diagonal convergence of matrices
    Pryporova, Olga
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (2-3) : 515 - 525