Convergence of relaxed multisplitting USAOR methods for H-matrices linear systems

被引:12
|
作者
Zhang, Li-Tao [1 ]
Huang, Ting-Zhu [1 ]
Gu, Tong-Xiang [2 ]
Guo, Xin-Lan [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
[2] Lab Computationary Phys, Beijing 100088, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
USAOR multisplitting; relaxed parallel multisplitting method; H-matrix; convergence;
D O I
10.1016/j.amc.2008.01.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relaxed technique is one of the techniques for improving convergence rate of splitting iterative methods. In this paper, based on the methods in Frommer and Mayer [A. Frommer, F. Mayer, Convergene of relaxed parallel multisplitting methods, Linear Algebra and its Applications 119 (1989) 141-152] and Zhang et al. [L. T. Zhang, T. Z. Huang, T. X. Gu, Global relaxed non-stationary multisplitting multi-parameters methods, International Journal of Computer Mathematics 85(2) (2008) 211-224.], we present local relaxed parallel multisplitting method, global relaxed parallel multisplitting method, local relaxed non-stationary parallel multisplitting multi-parameters method and global relaxed non-stationary parallel multisplitting multi-parameters method, and study the convergence of our methods associated with USAOR multisplitting for solving a large sparse linear system whose coefficient matrix is an H-matrix. When choosing the approximately optimal relaxed parameters, our methods have faster convergence rate, which is showed through numerical examples. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [1] Convergence improvement of relaxed multisplitting USAOR methods for H-matrices linear systems
    Zhang, Li-Tao
    Zhou, Yong-Wei
    Gu, Tong-Xiang
    Liu, Xing-Ping
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 225 - 232
  • [2] Convergence of parallel multisplitting USAOR methods for block H-matrices linear systems
    Wang, Xue-Zhong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (03) : 583 - 591
  • [3] Preconditioned parallel multisplitting USAOR methods for H-matrices linear systems
    Wang, Xuezhong
    Wang, Zuowei
    IAENG International Journal of Applied Mathematics, 2014, 44 (01) : 45 - 52
  • [4] Preconditioned parallel multisplitting USAOR method for H-matrices linear systems
    Wang, Guangbin
    Sun, Deyu
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 156 - 164
  • [5] Convergence of Relaxed Matrix Parallel Multisplitting Chaotic Methods for H-Matrices
    Zhang, Li-Tao
    Li, Jian-Lei
    Gu, Tong-Xiang
    Liu, Xing-Ping
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [6] Applied convergence results of relaxed matrix multisplitting chaotic methods for H-matrices
    Cheng Shao-Hua
    Zhang Li-Tao
    COMPUTER AND INFORMATION TECHNOLOGY, 2014, 519-520 : 874 - 877
  • [7] CONVERGENCE OF PARALLEL MULTISPLITTING METHODS FOR H-MATRICES
    SONG, YZ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 50 (3-4) : 213 - 232
  • [8] Weaker Convergence of Global Relaxed Multisplitting USAOR Methods for an H-matrix
    Li-Tao Zhang
    Ding-De Jiang
    Xian-Yu Zuo
    Ying-Chao Zhao
    Mobile Networks and Applications, 2021, 26 : 755 - 765
  • [9] CONVERGENCE OF TWO-STAGE MULTISPLITTING METHOD WITH SSOR MULTISPLITTING FOR LINEAR SYSTEMS WITH H-MATRICES
    Bai, Yu-Qin
    Huang, Ting-Zhu
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2012, 11 (03) : 358 - 367
  • [10] Weaker Convergence of Global Relaxed Multisplitting USAOR Methods for anH-matrix
    Zhang, Li-Tao
    Jiang, Ding-De
    Zuo, Xian-Yu
    Zhao, Ying-Chao
    MOBILE NETWORKS & APPLICATIONS, 2021, 26 (02): : 755 - 765