Convergence of relaxed multisplitting USAOR methods for H-matrices linear systems

被引:12
|
作者
Zhang, Li-Tao [1 ]
Huang, Ting-Zhu [1 ]
Gu, Tong-Xiang [2 ]
Guo, Xin-Lan [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Appl Math, Chengdu 610054, Sichuan, Peoples R China
[2] Lab Computationary Phys, Beijing 100088, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
USAOR multisplitting; relaxed parallel multisplitting method; H-matrix; convergence;
D O I
10.1016/j.amc.2008.01.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Relaxed technique is one of the techniques for improving convergence rate of splitting iterative methods. In this paper, based on the methods in Frommer and Mayer [A. Frommer, F. Mayer, Convergene of relaxed parallel multisplitting methods, Linear Algebra and its Applications 119 (1989) 141-152] and Zhang et al. [L. T. Zhang, T. Z. Huang, T. X. Gu, Global relaxed non-stationary multisplitting multi-parameters methods, International Journal of Computer Mathematics 85(2) (2008) 211-224.], we present local relaxed parallel multisplitting method, global relaxed parallel multisplitting method, local relaxed non-stationary parallel multisplitting multi-parameters method and global relaxed non-stationary parallel multisplitting multi-parameters method, and study the convergence of our methods associated with USAOR multisplitting for solving a large sparse linear system whose coefficient matrix is an H-matrix. When choosing the approximately optimal relaxed parameters, our methods have faster convergence rate, which is showed through numerical examples. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 132
页数:12
相关论文
共 50 条
  • [41] Convergence behaviors of multisplitting methods with K+1 relaxed parameters
    Cheng, Guang-Hui
    Huang, Ting-Zhu
    Jing, Yan-Fei
    Zhang, Li-Tao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 229 (01) : 61 - 69
  • [42] On multisplitting methods for linear systems of equations
    Alefeld, G
    Lenhardt, I
    Mayer, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 111 - 114
  • [43] CONVERGENCE OF PARALLEL MULTISPLITTING ITERATIVE METHODS FOR M-MATRICES
    NEUMANN, M
    PLEMMONS, RJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 : 559 - 573
  • [44] Convergence for the MSOR iterative method applied H-matrices
    Wang, XM
    APPLIED NUMERICAL MATHEMATICS, 1996, 21 (04) : 469 - 479
  • [45] On multisplitting methods for linear systems of equations
    Z Angew Math Mech ZAMM, Suppl 1 (111):
  • [46] Convergence Theory of the Preconditioned SOR Method for H-Matrices
    Li, Aijuan
    2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 1642 - 1645
  • [47] THE WEAKER CONVERGENCE OF NON-STATIONARY MATRIX MULTISPLITTING METHODS FOR ALMOST LINEAR SYSTEMS
    Zhang, Li-Tao
    Huang, Ting-Zhu
    Cheng, Shao-Hua
    Gu, Tong-Xiang
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (04): : 1423 - 1436
  • [48] BACKWARD ERROR ANALYSIS FOR LINEAR-SYSTEMS ASSOCIATED WITH INVERSES OF H-MATRICES
    NEUMANN, M
    PLEMMONS, RJ
    BIT, 1984, 24 (01): : 102 - 112
  • [49] CONVERGENCE OF MULTISPLITTING METHODS WITH PREWEIGHTING FOR AN H-MATRIX
    Du Han, Yu
    Yun, Jae Heon
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (05) : 997 - 1006
  • [50] Convergence of the modified Gauss-Seidel method for H-matrices
    Liu, Qingbing
    ICNC 2007: Third International Conference on Natural Computation, Vol 3, Proceedings, 2007, : 268 - 271