Several Grüss’ type inequalities for the complex integral

被引:0
|
作者
Silvestru Sever Dragomir
机构
[1] Victoria University,Mathematics, College of Engineering and Science
[2] University of the Witwatersrand,DST
来源
The Journal of Analysis | 2021年 / 29卷
关键词
Complex integral; Continuous functions; Holomorphic functions; Grüss inequality; 26D15; 26D10; 30A10; 30A86;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that f and g are continuous on γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, γ⊂C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \subset \mathbb { C}$$\end{document} is a piecewise smooth path parametrized by zt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( t\right) ,$$\end{document}t∈a,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ a,b\right]$$\end{document} from za=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( a\right) =u$$\end{document} to zb=w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( b\right) =w$$\end{document} with w≠u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\ne u$$\end{document} and the complexČebyšev functional is defined by Dγf,g:=1w-u∫γfzgzdz-1w-u∫γfzdz1w-u∫γgzdz.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {D}_{\gamma }\left( f,g\right) :=\frac{1}{w-u}\int _{\gamma }f\left( z\right) g\left( z\right) dz-\frac{1}{w-u}\int _{\gamma }f\left( z\right) dz \frac{1}{w-u}\int _{\gamma }g\left( z\right) dz. \end{aligned}$$\end{document}In this paper we establish some bounds for the magnitude of the functional Dγf,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_{\gamma }\left( f,g\right)$$\end{document} and a related version of this under various assumptions for the functions f and g and provide some examples for circular paths.
引用
收藏
页码:337 / 351
页数:14
相关论文
共 50 条
  • [31] Combined dynamic Grüss inequalities on time scales
    Sidi Ammi M.R.
    Torres D.F.M.
    Journal of Mathematical Sciences, 2009, 161 (6) : 792 - 802
  • [32] Čebyšev–Grüss inequalities for α -partial derivatives
    Zhao, Chang-Jian
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 2021, 115 (01)
  • [33] A new integral version of generalized Ostrowski-Gr?ss type inequality with applications
    Dragomir, Sever S.
    Khan, Asif R.
    Khan, Maria
    Mehmood, Faraz
    Shaikh, Muhammad Awais
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2022, 34 (05)
  • [34] Zygmund-Type Integral Inequalities for Complex Polynomials
    Mir, Abdullah
    Rather, N. A.
    Dar, Ishfaq
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [35] Zygmund-Type Integral Inequalities for Complex Polynomials
    Abdullah Mir
    N. A. Rather
    Ishfaq Dar
    Mediterranean Journal of Mathematics, 2023, 20
  • [36] ON ORDER AND TYPE OF INTEGRAL FUNCTIONS OF SEVERAL COMPLEX VARIABLES
    SRIVASTA.RK
    KUMAR, V
    COMPOSITIO MATHEMATICA, 1966, 17 (02) : 161 - &
  • [37] On Grünbaum Type Inequalities
    Francisco Marín Sola
    Jesús Yepes Nicolás
    The Journal of Geometric Analysis, 2021, 31 : 9981 - 9995
  • [38] New general Grüss-type inequalities over σ-finite measure space with applications
    Sajid Iqbal
    Muhammad Adil Khan
    Thabet Abdeljawad
    Muhammad Samraiz
    Gauhar Rahman
    Kottakkaran Sooppy Nisar
    Advances in Difference Equations, 2020
  • [39] Some Inequalities of the Grüss Type for the Numerical Radius of Bounded Linear Operators in Hilbert Spaces
    S. S. Dragomir
    Journal of Inequalities and Applications, 2008
  • [40] On some Grüss-type inequalities via k-weighted fractional operators
    Benaissa, Bouharket
    Azzouz, Noureddine
    Sarikaya, Mehmet Zeki
    FILOMAT, 2024, 38 (12) : 4009 - 4019