Combined dynamic Grüss inequalities on time scales

被引:1
|
作者
Sidi Ammi M.R. [1 ]
Torres D.F.M. [1 ]
机构
[1] Departamento de Matemática, Universidade de Aveiro, Aveiro
关键词
Type Inequality; Integral Inequality; Jump Operator; Classical Inequality; Cerone;
D O I
10.1007/s10958-009-9600-2
中图分类号
学科分类号
摘要
We prove a more general version of the Grüss inequality by using the recent theory of combined dynamic derivatives on time scales and the more general notions of diamond-α derivative and integral. For the particular case where α = 1, one obtains the delta-integral Grüss inequality on time scales in (see M. Bohner and T. Matthews [5]); for α = 0 a nabla-integral Grüss inequality is derived. If we further restrict ourselves by fixing the time scale to the real (or integer) numbers, then the standard continuous (discrete) inequalities are obtained. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:792 / 802
页数:10
相关论文
共 50 条
  • [1] On some dynamic inequalities of Ostrowski, trapezoid, and Grüss type on time scales
    Ahmed A. El-Deeb
    Journal of Inequalities and Applications, 2022
  • [2] On some investigations of alpha-conformable Ostrowski–Trapezoid–Grüss dynamic inequalities on time scales
    Ahmed A. El-Deeb
    Journal of Inequalities and Applications, 2023
  • [3] New generalized ostrowski-grüss type inequalities in two independent variables on time scales
    Fu, X. (XilianFu@163.com), 1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (12):
  • [4] On Multivariate Grüss Inequalities
    Chang-Jian Zhao
    Wing-Sum Cheung
    Journal of Inequalities and Applications, 2008
  • [5] Generalized Ostrowski-Grüss Like Inequality on Time Scales
    Mehmood, Faraz
    Khan, Asif Raza
    Shaikh, Muhammad Awais
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (04): : 191 - 203
  • [6] Some nonlinear dynamic inequalities on time scales
    Li, Wei Nian
    Sheng, Weihong
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04): : 545 - 554
  • [7] HIGHER ORDER DYNAMIC INEQUALITIES ON TIME SCALES
    Saker, S. H.
    Agarwal, R. P.
    O'Regan, Donal
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 461 - 472
  • [8] Dynamic integral inequalities on time scales with 'maxima'
    Tariboon, Jessada
    Thiramanus, Phollakrit
    Ntouyas, Sotiris K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [9] Fractional dynamic inequalities harmonized on time scales
    Sahir, Muhammad Jibril Shahab
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [10] BOUNDS OF CERTAIN DYNAMIC INEQUALITIES ON TIME SCALES
    Pachpatte, Deepak B.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 6 (02): : 164 - 169