Several Grüss’ type inequalities for the complex integral

被引:0
|
作者
Silvestru Sever Dragomir
机构
[1] Victoria University,Mathematics, College of Engineering and Science
[2] University of the Witwatersrand,DST
来源
The Journal of Analysis | 2021年 / 29卷
关键词
Complex integral; Continuous functions; Holomorphic functions; Grüss inequality; 26D15; 26D10; 30A10; 30A86;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that f and g are continuous on γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}, γ⊂C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \subset \mathbb { C}$$\end{document} is a piecewise smooth path parametrized by zt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( t\right) ,$$\end{document}t∈a,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in \left[ a,b\right]$$\end{document} from za=u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( a\right) =u$$\end{document} to zb=w\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z\left( b\right) =w$$\end{document} with w≠u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w\ne u$$\end{document} and the complexČebyšev functional is defined by Dγf,g:=1w-u∫γfzgzdz-1w-u∫γfzdz1w-u∫γgzdz.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathcal {D}_{\gamma }\left( f,g\right) :=\frac{1}{w-u}\int _{\gamma }f\left( z\right) g\left( z\right) dz-\frac{1}{w-u}\int _{\gamma }f\left( z\right) dz \frac{1}{w-u}\int _{\gamma }g\left( z\right) dz. \end{aligned}$$\end{document}In this paper we establish some bounds for the magnitude of the functional Dγf,g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_{\gamma }\left( f,g\right)$$\end{document} and a related version of this under various assumptions for the functions f and g and provide some examples for circular paths.
引用
收藏
页码:337 / 351
页数:14
相关论文
共 50 条
  • [21] On some dynamic inequalities of Ostrowski, trapezoid, and Grüss type on time scales
    Ahmed A. El-Deeb
    Journal of Inequalities and Applications, 2022
  • [22] New Ostrowski-Grüss type inequalities with the derivatives bounded by functions
    Qinghua Feng
    Fanwei Meng
    Journal of Inequalities and Applications, 2013
  • [23] Two-point Ostrowski and Ostrowski–Grüss type inequalities with applications
    Mohammad W. Alomari
    The Journal of Analysis, 2020, 28 : 623 - 661
  • [24] On some Gruss' type inequalities for the complex integral
    Dragomir, Silvestru Sever
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3531 - 3543
  • [25] ON INTEGRAL FORMS OF SEVERAL INEQUALITIES
    Ciurdariu, Loredana
    JOURNAL OF SCIENCE AND ARTS, 2013, (02): : 159 - 166
  • [26] SEVERAL INTERESTING INTEGRAL INEQUALITIES
    Liu, Wenjun
    Ngo, Quoc-Anh
    Vu Nhat Huy
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 201 - 212
  • [27] On Several Interesting Integral Inequalities
    Sulaiman, W. T.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2234 - 2240
  • [28] NEW SEVERAL INTEGRAL INEQUALITIES
    Sulaiman, Waad
    TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (04): : 505 - 510
  • [29] Grüss-type integrals inequalities via generalized proportional fractional operators
    Saima Rashid
    Fahd Jarad
    Muhammad Aslam Noor
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [30] Some Grüss type inequalities and corrected three-point quadrature formulae of Euler type
    Milica Klaričić Bakula
    Josip Pečarić
    Mihaela Ribičić Penava
    Ana Vukelić
    Journal of Inequalities and Applications, 2015