Some Grüss type inequalities and corrected three-point quadrature formulae of Euler type

被引:0
|
作者
Milica Klaričić Bakula
Josip Pečarić
Mihaela Ribičić Penava
Ana Vukelić
机构
[1] University of Split,Faculty of Science
[2] University of Zagreb,Faculty of Textile Technology
[3] University of Osijek,Department of Mathematics
[4] University of Zagreb,Faculty of Food Technology and Biotechnology
关键词
Chebyshev functional; Grüss inequality; corrected three-point quadrature formulae; corrected Euler Bullen-Simpson formula; 26D15; 26D20; 26D99;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain some new Grüss type inequalities for the general corrected three-point quadrature formulae of Euler type. As special cases, we derive some new bounds for the corrected Euler Simpson formula, the corrected dual Euler Simpson formula and the corrected Euler Maclaurin formula. Also, applications for the corrected Euler Bullen-Simpson formula are considered.
引用
收藏
相关论文
共 50 条
  • [1] Some Gruss type inequalities and corrected three-point quadrature formulae of Euler type
    Bakula, Milica Klaricic
    Pecaric, Josip
    Penava, Mihaela Ribicic
    Vukelic, Ana
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [2] NEW ESTIMATIONS OF THE REMAINDER IN THREE-POINT QUADRATURE FORMULAE OF EULER TYPE
    Bakula, M. Klaricic
    Pecaric, J.
    Penava, M. Ribicic
    Vukelic, A.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (04): : 1143 - 1156
  • [3] Hermite-Hadamard-Fejer-Type Inequalities and Weighted Three-Point Quadrature Formulae
    Penava, Mihaela Ribicic
    MATHEMATICS, 2021, 9 (15)
  • [4] GENERAL THREE-POINT QUADRATURE FORMULAS OF EULER TYPE
    Franjic, Iva
    Pecaric, Josip
    Peric, Ivan
    ANZIAM JOURNAL, 2011, 52 (03): : 309 - 317
  • [5] Bounds for the Chebyshev functional and corrected four-point quadrature formulae of Euler type
    Pecaric, J.
    Penava, M. Ribicic
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2016, 9 (04)
  • [6] OSTROWSKI TYPE INEQUALITIES AND SOME SELECTED QUADRATURE FORMULAE
    Milovanovic, Gradimir, V
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2021, 15 (01) : 151 - 178
  • [7] On some Grüss’ type inequalities for the complex integral
    Silvestru Sever Dragomir
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3531 - 3543
  • [8] GENERAL CLOSED 4-POINT QUADRATURE FORMULAE OF EULER TYPE
    Franjic, I.
    Pecaric, J.
    Peric, I.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2009, 12 (03): : 573 - 586
  • [9] Quadrature formulae of Gauss type based on Euler identities
    Franjic, I.
    Peric, I.
    Pecaric, J.
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (3-4) : 355 - 370
  • [10] Two-point Ostrowski and Ostrowski–Grüss type inequalities with applications
    Mohammad W. Alomari
    The Journal of Analysis, 2020, 28 : 623 - 661