Anomalies in (2+1)D Fermionic Topological Phases and (3+1)D Path Integral State Sums for Fermionic SPTs

被引:0
|
作者
Srivatsa Tata
Ryohei Kobayashi
Daniel Bulmash
Maissam Barkeshli
机构
[1] University of Maryland,Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics
[2] University of Tokyo,Institute for Solid State Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a (2+1)D fermionic topological order and a symmetry fractionalization class for a global symmetry group G, we show how to construct a (3+1)D topologically invariant path integral for a fermionic G symmetry-protected topological state (G-FSPT), in terms of an exact combinatorial state sum. This provides a general way to compute anomalies in (2+1)D fermionic symmetry-enriched topological states of matter. Equivalently, our construction provides an exact (3+1)D combinatorial state sum for a path integral of any FSPT that admits a symmetry-preserving gapped boundary, which includes the (3+1)D topological insulators and superconductors in class AII, AIII, DIII, and CII that arise in the free fermion classification. Our construction proceeds by using the fermionic topological order (characterized by a super-modular tensor category) and symmetry fractionalization data to define a (3+1)D path integral for a bosonic theory that hosts a non-trivial emergent fermionic particle, and then condensing the fermion by summing over closed 3-form Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2$$\end{document} background gauge fields. This procedure involves a number of non-trivial higher-form anomalies associated with Fermi statistics and fractional quantum numbers that need to be appropriately canceled off with a Grassmann integral that depends on a generalized spin structure. We show how our construction reproduces the Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document} anomaly indicator for time-reversal symmetric topological superconductors with T2=(-1)F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}^2 = (-1)^F$$\end{document}. Mathematically, with some standard technical assumptions, this implies that our construction gives a combinatorial state sum on a triangulated 4-manifold that can distinguish all Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document}Pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pin}^+$$\end{document} smooth bordism classes. As such, it contains the topological information encoded in the eta invariant of the pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} Dirac operator, thus giving an example of a state sum TQFT that can distinguish exotic smooth structure.
引用
收藏
页码:199 / 336
页数:137
相关论文
共 50 条
  • [41] On the topological charge of S O (2) gauged Skyrmions in 2+1 and 3+1 dimensions
    Navarro-Lerida, Francisco
    Radu, Eugen
    Tchrakian, D. H.
    PHYSICS LETTERS B, 2019, 791 : 287 - 292
  • [43] Towards a dual spin network basis for (3+1)d lattice gauge theories and topological phases
    Clement Delcamp
    Bianca Dittrich
    Journal of High Energy Physics, 2018
  • [44] Gapped boundaries and string-like excitations in (3+1)d gauge models of topological phases
    Alex Bullivant
    Clement Delcamp
    Journal of High Energy Physics, 2021
  • [45] Towards a dual spin network basis for (3+1)d lattice gauge theories and topological phases
    Delcamp, Clement
    Dittrich, Bianca
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10):
  • [46] Gapped boundaries and string-like excitations in (3+1)d gauge models of topological phases
    Bullivant, Alex
    Delcamp, Clement
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (07)
  • [47] Holographic duality between (2+1)-dimensional quantum anomalous Hall state and (3+1)-dimensional topological insulators
    Gu, Yingfei
    Lee, Ching Hua
    Wen, Xueda
    Cho, Gil Young
    Ryu, Shinsei
    Qi, Xiao-Liang
    PHYSICAL REVIEW B, 2016, 94 (12)
  • [48] Classification of (2+1)-dimensional topological order and symmetry-protected topological order for bosonic and fermionic systems with on-site symmetries
    Lan, Tian
    Kong, Liang
    Wen, Xiao-Gang
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [49] Comments on global symmetries, anomalies, and duality in (2+1)d
    Benini, Francesco
    Hsin, Po-Shen
    Seiberg, Nathan
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (04):
  • [50] Topological order in the (2+1)D compact lattice superconductor
    Vestergren, A
    Lidmar, J
    Hansson, TH
    EUROPHYSICS LETTERS, 2005, 69 (02): : 256 - 262