Anomalies in (2+1)D Fermionic Topological Phases and (3+1)D Path Integral State Sums for Fermionic SPTs

被引:0
|
作者
Srivatsa Tata
Ryohei Kobayashi
Daniel Bulmash
Maissam Barkeshli
机构
[1] University of Maryland,Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics
[2] University of Tokyo,Institute for Solid State Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a (2+1)D fermionic topological order and a symmetry fractionalization class for a global symmetry group G, we show how to construct a (3+1)D topologically invariant path integral for a fermionic G symmetry-protected topological state (G-FSPT), in terms of an exact combinatorial state sum. This provides a general way to compute anomalies in (2+1)D fermionic symmetry-enriched topological states of matter. Equivalently, our construction provides an exact (3+1)D combinatorial state sum for a path integral of any FSPT that admits a symmetry-preserving gapped boundary, which includes the (3+1)D topological insulators and superconductors in class AII, AIII, DIII, and CII that arise in the free fermion classification. Our construction proceeds by using the fermionic topological order (characterized by a super-modular tensor category) and symmetry fractionalization data to define a (3+1)D path integral for a bosonic theory that hosts a non-trivial emergent fermionic particle, and then condensing the fermion by summing over closed 3-form Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2$$\end{document} background gauge fields. This procedure involves a number of non-trivial higher-form anomalies associated with Fermi statistics and fractional quantum numbers that need to be appropriately canceled off with a Grassmann integral that depends on a generalized spin structure. We show how our construction reproduces the Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document} anomaly indicator for time-reversal symmetric topological superconductors with T2=(-1)F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}^2 = (-1)^F$$\end{document}. Mathematically, with some standard technical assumptions, this implies that our construction gives a combinatorial state sum on a triangulated 4-manifold that can distinguish all Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document}Pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pin}^+$$\end{document} smooth bordism classes. As such, it contains the topological information encoded in the eta invariant of the pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} Dirac operator, thus giving an example of a state sum TQFT that can distinguish exotic smooth structure.
引用
收藏
页码:199 / 336
页数:137
相关论文
共 50 条
  • [21] Magnetic monopole plasma phase in (2+1)d compact quantum electrodynamics with fermionic matter
    Armour, Wesley
    Hands, Simon
    Kogut, John B.
    Lucini, Biagio
    Strouthos, Costas
    Vranas, Pavlos
    PHYSICAL REVIEW D, 2011, 84 (01):
  • [22] Magnetic Phases of Fermionic Atoms Confined in 1-D Optical Superlattice
    Silva-Valencia, J.
    Franco, R.
    Figueira, M. S.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (08) : 4679 - 4682
  • [23] Gauging Lie group symmetry in (2+1)d topological phases
    Cheng, Meng
    Hsin, Po -Shen
    Jian, Chao -Ming
    SCIPOST PHYSICS, 2023, 14 (05):
  • [24] Microscopic Description of 2D Topological Phases, Duality, and 3D State Sums
    Kadar, Zoltan
    Marzuoli, Annalisa
    Rasetti, Mario
    ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010
  • [25] Fermionic path integrals and correlation dynamics in a 1D XY system
    Lyris, I
    Lykourgias, P.
    Karanikas, A., I
    ANNALS OF PHYSICS, 2020, 421
  • [26] Supersymmetric quantum field theory with exotic symmetry in 3+1 dimensions and fermionic fracton phases
    Yamaguchi, Satoshi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (06):
  • [27] Bounds on triangle anomalies in (3+1)D
    Lin, Ying-Hsuan
    Meltzer, David
    Shao, Shu-Heng
    Stergiou, Andreas
    PHYSICAL REVIEW D, 2020, 101 (12)
  • [28] Modular anomalies in (2+1)- and (3+1)-dimensional edge theories
    Park, Moon Jip
    Fang, Chen
    Bernevig, B. Andrei
    Gilbert, Matthew J.
    PHYSICAL REVIEW B, 2017, 95 (23)
  • [29] Topological soliton-polaritons in 1D systems of light and fermionic matter
    Fraser, Kieran A.
    Piazza, Francesco
    COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [30] Topological soliton-polaritons in 1D systems of light and fermionic matter
    Kieran A. Fraser
    Francesco Piazza
    Communications Physics, 2