Anomalies in (2+1)D Fermionic Topological Phases and (3+1)D Path Integral State Sums for Fermionic SPTs

被引:0
|
作者
Srivatsa Tata
Ryohei Kobayashi
Daniel Bulmash
Maissam Barkeshli
机构
[1] University of Maryland,Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics
[2] University of Tokyo,Institute for Solid State Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a (2+1)D fermionic topological order and a symmetry fractionalization class for a global symmetry group G, we show how to construct a (3+1)D topologically invariant path integral for a fermionic G symmetry-protected topological state (G-FSPT), in terms of an exact combinatorial state sum. This provides a general way to compute anomalies in (2+1)D fermionic symmetry-enriched topological states of matter. Equivalently, our construction provides an exact (3+1)D combinatorial state sum for a path integral of any FSPT that admits a symmetry-preserving gapped boundary, which includes the (3+1)D topological insulators and superconductors in class AII, AIII, DIII, and CII that arise in the free fermion classification. Our construction proceeds by using the fermionic topological order (characterized by a super-modular tensor category) and symmetry fractionalization data to define a (3+1)D path integral for a bosonic theory that hosts a non-trivial emergent fermionic particle, and then condensing the fermion by summing over closed 3-form Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_2$$\end{document} background gauge fields. This procedure involves a number of non-trivial higher-form anomalies associated with Fermi statistics and fractional quantum numbers that need to be appropriately canceled off with a Grassmann integral that depends on a generalized spin structure. We show how our construction reproduces the Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document} anomaly indicator for time-reversal symmetric topological superconductors with T2=(-1)F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{T}}^2 = (-1)^F$$\end{document}. Mathematically, with some standard technical assumptions, this implies that our construction gives a combinatorial state sum on a triangulated 4-manifold that can distinguish all Z16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb Z_{16}$$\end{document}Pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Pin}^+$$\end{document} smooth bordism classes. As such, it contains the topological information encoded in the eta invariant of the pin+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^+$$\end{document} Dirac operator, thus giving an example of a state sum TQFT that can distinguish exotic smooth structure.
引用
收藏
页码:199 / 336
页数:137
相关论文
共 50 条
  • [31] A fully solvable model of fermionic interaction in 3+1d
    Grable, Seth
    Weiner, Max
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (09)
  • [32] A fully solvable model of fermionic interaction in 3 + 1d
    Seth Grable
    Max Weiner
    Journal of High Energy Physics, 2023
  • [33] Non-Abelian three-loop braiding statistics for 3D fermionic topological phases
    Jing-Ren Zhou
    Qing-Rui Wang
    Chenjie Wang
    Zheng-Cheng Gu
    Nature Communications, 12
  • [34] Non-Abelian three-loop braiding statistics for 3D fermionic topological phases
    Zhou, Jing-Ren
    Wang, Qing-Rui
    Wang, Chenjie
    Gu, Zheng-Cheng
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [35] Gravitational anomaly of (3+1)-dimensional Z2 toric code with fermionic charges and fermionic loop self-statistics
    Fidkowski, Lukasz
    Haah, Jeongwan
    Hastings, Matthew B.
    PHYSICAL REVIEW B, 2022, 106 (16)
  • [36] Solutions of (2+1)-D & (3+1)-D Burgers Equations by New Laplace Variational Iteration Technique
    Singh, Gurpreet
    Singh, Inderdeep
    AlDerea, Afrah M.
    Alanzi, Agaeb Mahal
    Khalifa, Hamiden Abd El-Wahed
    AXIOMS, 2023, 12 (07)
  • [37] Energy Spectrum Analysis of 1D Spin-3/2 Fermionic Chains
    J. J. Hernández-Sarria
    K. Rodríguez
    Journal of Superconductivity and Novel Magnetism, 2015, 28 : 2809 - 2813
  • [38] Energy Spectrum Analysis of 1D Spin-3/2 Fermionic Chains
    Hernandez-Sarria, J. J.
    Rodriguez, K.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2015, 28 (09) : 2809 - 2813
  • [39] Anomalies of non-invertible symmetries in (3+1)d
    Cordova, Clay
    Hsin, Po-Shen
    Zhang, Carolyn
    SCIPOST PHYSICS, 2024, 17 (05):
  • [40] A new picture on the (3+1)D topological mass mechanism
    Ventura, OS
    Amaral, RLPG
    Costa, JV
    Buffon, LO
    Lemes, VER
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (48): : 11711 - 11723