On the measure of M-rough approximation of L-fuzzy sets

被引:1
|
作者
Sang-Eon Han
Alexander Šostak
机构
[1] Chonbuk National University,Department of Mathematics Education, Institute of Pure and Applied Mathematics
[2] University of Latvia,Institute of Mathematics and CS
[3] University of Latvia,Faculty of Physics and Mathematics
来源
Soft Computing | 2018年 / 22卷
关键词
-fuzzy set; Upper ; -rough approximation operator; Lower ; -rough approximation operator; Measure of inclusion; Measure of ; -rough approximation of an ; -fuzzy set; Ditopology; -ditopology;
D O I
暂无
中图分类号
学科分类号
摘要
We develop an approach allowing to measure the “quality” of rough approximation of fuzzy sets. It is based on what we call “an approximative quadruple” Q=(L,M,φ,ψ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q=(L,M,\varphi ,\psi )$$\end{document} where L and M are complete lattice commutative monoids and φ:L→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi : L \rightarrow M$$\end{document}, ψ:M→L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi : M \rightarrow L$$\end{document} are mappings satisfying certain conditions. By realization of this scheme, we get measures of upper and lower rough approximation for L-fuzzy subsets of a set equipped with an M-preoder R:X×X→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R: X\times X \rightarrow M$$\end{document}. In case R is symmetric, these measures coincide. Basic properties of such measures are studied. Besides, we present an interpretation of measures of rough approximation in terms of LM-fuzzy topologies.
引用
收藏
页码:3843 / 3855
页数:12
相关论文
共 50 条
  • [41] Generalized intuitionistic fuzzy sets and L-fuzzy sets
    Wang, Yongquan
    Zhang, Xiaohong
    Shao, ZhiQing
    Proceedings of 2006 International Conference on Artificial Intelligence: 50 YEARS' ACHIEVEMENTS, FUTURE DIRECTIONS AND SOCIAL IMPACTS, 2006, : 318 - 321
  • [42] Representing L-fuzzy sets
    Flondor, Paul
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2006, 12 (3-4) : 365 - 371
  • [43] ENTROPY OF L-FUZZY SETS
    DELUCA, A
    TERMINI, S
    INFORMATION AND CONTROL, 1974, 24 (01): : 55 - 73
  • [44] L-FUZZY CLOSE-TOPOLOGICAL AND L-FUZZY APPROXIMATION SPACE
    Wu, Zhengjiang
    Qin, Keyun
    INTELLIGENT DECISION MAKING SYSTEMS, VOL. 2, 2010, : 619 - 624
  • [45] Application of L-fuzzy sets in m-ary semigroups
    Kuka, Shkelqim
    Hila, Kostaq
    Naka, Krisanthi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 4031 - 4040
  • [46] Granular variable precision L-fuzzy rough sets based on residuated lattices
    Qiao, Junsheng
    Hu, Bao Qing
    FUZZY SETS AND SYSTEMS, 2018, 336 : 148 - 166
  • [47] L-fuzzifying approximation operators in fuzzy rough sets
    Pang, Bin
    Mi, Ju-Sheng
    Xiu, Zhen-Yu
    INFORMATION SCIENCES, 2019, 480 : 14 - 33
  • [48] A short note on L-fuzzy approximation spaces and L-fuzzy pretopological spaces
    Qiao, Junsheng
    Hu, Bao Qing
    FUZZY SETS AND SYSTEMS, 2017, 312 : 126 - 134
  • [49] PROBABILISTICALLY COMPACT L-FUZZY SETS
    HOHLE, U
    MANUSCRIPTA MATHEMATICA, 1979, 26 (04) : 331 - 347
  • [50] Classification based on L-fuzzy sets
    Montes, Susana
    Diaz, Susana
    Montes, Ignacio
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 29 (03) : 1177 - 1184